This file is indexed.

/usr/include/ThePEG/PDF/PDF.h is in libthepeg-dev 1.8.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// -*- C++ -*-
//
// PDF.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_PDF_H
#define ThePEG_PDF_H
// This is the declaration of the PDF class.

#include "ThePEG/PDF/PartonBinInstance.h"

namespace ThePEG {

/**
 * PDF is a simple wrapper class with normal copy-semantics which
 * holds a PDFBase object and a ParticleData object for which to
 * determine parton densities.
 */
class PDF {

public:

  /** @name Standard constructors, assignment and destructors. */
  //@{
  /**
   * Default constructor.
   */
  PDF() {}

  /**
   * Constructor from a given PartonBinInstance.
   */
  PDF(tcPBIPtr pb) {
    if ( !pb ) return;
    thePDF = pb->pdf();
    theParticle = pb->particleData();
  }

  /**
   * Constructor from a given PDFBase and ParticleData object.
   */
  PDF(tcPDFPtr pdf, tcPDPtr pd)
    : thePDF(pdf), theParticle(pd) {}
  //@}

public:

  /** @name Access the parton densities. */
  //@{
  /**
   * Return the density for the given \a parton, for a given \a
   * partonScale and logarithmic momentum fraction \a l assuming the
   * particle has a virtuality \a particleScale.
   */
  double xfl(tcPPtr parton, Energy2 partonScale, double l,
	     Energy2 particleScale = ZERO) const {
    return xfl(parton->dataPtr(), partonScale, l, particleScale);
  }

  /**
   * Return the density for the given \a parton, for a given \a
   * partonScale and momentum fraction \a x assuming the
   * particle has a virtuality \a particleScale.
   */
  double xfx(tcPPtr parton, Energy2 partonScale, double x,
	     double eps = 0.0, Energy2 particleScale = ZERO) const {
    return xfx(parton->dataPtr(), partonScale, x, eps, particleScale);
  }

  /**
   * Return the valence density for the given \a parton, for a given
   * \a partonScale and logarithmic momentum fraction \a l assuming
   * the particle has a virtuality \a particleScale.
   */
  double xfvl(tcPPtr parton, Energy2 partonScale, double l,
	      Energy2 particleScale = ZERO) const {
    return xfvl(parton->dataPtr(), partonScale, l, particleScale);
  }

  /**
   * Return the valence density for the given \a parton, for a given
   * \a partonScale and momentum fraction \a x assuming the particle
   * has a virtuality \a particleScale.
   */
  double xfvx(tcPPtr parton, Energy2 partonScale, double x,
	      double eps = 0.0, Energy2 particleScale = ZERO) const {
    return xfvx(parton->dataPtr(), partonScale, x, eps, particleScale);
  }

  /**
   * Return the density for the given \a parton, for a given \a
   * partonScale and logarithmic momentum fraction \a l assuming the
   * particle has a virtuality \a particleScale.
   */
  double xfl(tcPDPtr parton, Energy2 partonScale, double l,
	     Energy2 particleScale = ZERO) const {
    return thePDF?
      thePDF->xfl(theParticle, parton, partonScale, l, particleScale): 0.0;
  }

  /**
   * Return the density for the given \a parton, for a given \a
   * partonScale and momentum fraction \a x assuming the
   * particle has a virtuality \a particleScale.
   */
  double xfx(tcPDPtr parton, Energy2 partonScale, double x,
	     double eps = 0.0, Energy2 particleScale = ZERO) const {
    return thePDF?
      thePDF->xfx(theParticle, parton, partonScale, x, eps, particleScale): 0.0;
  }

  /**
   * Return the valence density for the given \a parton, for a given
   * \a partonScale and logarithmic momentum fraction \a l assuming
   * the particle has a virtuality \a particleScale.
   */
  double xfvl(tcPDPtr parton, Energy2 partonScale, double l,
	      Energy2 particleScale = ZERO) const {
    return thePDF?
      thePDF->xfvl(theParticle, parton, partonScale, l, particleScale): 0.0;
  }

  /**
   * Return the valence density for the given \a parton, for a given
   * \a partonScale and momentum fraction \a x assuming the particle
   * has a virtuality \a particleScale.
   */
  double xfvx(tcPDPtr parton, Energy2 partonScale, double x,
	      double eps = 0.0, Energy2 particleScale = ZERO) const {
    return thePDF?
      thePDF->xfvx(theParticle, parton, partonScale, x, eps, particleScale): 0.0;
  }
  //@}

  
  /**
   * The parton density object.
   */
  tcPDFPtr pdf() const { return thePDF; }

  /**
   * The particle for which the parton density is used.
   */
  tcPDPtr particle() const { return theParticle; }

  /**
   * Compare for equality.
   */
  bool operator==(const PDF& x) const {
    return
      pdf() == x.pdf() &&
      particle() == x.particle();
  }

  /**
   * Compare for ordering.
   */
  bool operator<(const PDF& x) const {
    return
      pdf() == x.pdf() ?
      particle() < x.particle() :
      pdf() < x.pdf();
  }

private:

  /**
   * The parton density object.
   */
  tcPDFPtr thePDF;

  /**
   * The particle for which the parton density is used.
   */
  tcPDPtr theParticle;

};

}

#endif /* ThePEG_PDF_H */