/usr/include/ThePEG/PDF/RemnantHandler.h is in libthepeg-dev 1.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | // -*- C++ -*-
//
// RemnantHandler.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_RemnantHandler_H
#define ThePEG_RemnantHandler_H
// This is the declaration of the RemnantHandler class.
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/PDF/PartonBin.h"
#include "ThePEG/PDF/PartonBinInstance.h"
#include "ThePEG/Vectors/Transverse.h"
#include "RemnantHandler.xh"
namespace ThePEG {
/**
* RemnantHandler is an abstract base class for implementing classes
* used to generate remnants when partons are extracted from
* particles.
*
* @see \ref RemnantHandlerInterfaces "The interfaces"
* defined for RemnantHandler.
* @see PartonExtractor
* @see PDFBase
*/
class RemnantHandler: public HandlerBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor. If \a multi is true the derived class can be
* used to extract more than one parton.
*/
RemnantHandler(bool multi = false);
//@}
public:
/** @name Virtual functions to be overridden by sub-classes. */
//@{
/**
* Return true if this remnant handler can handle extracting all
* specified \a partons from the given \a particle.
*/
virtual bool canHandle(tcPDPtr particle,
const cPDVector & partons) const = 0;
/**
* If the generation of remnants is expected to influence the actual
* cross section of the hard sub process, the degrees of freedom
* generated by this remnant handler may be included in the general
* phase space sampling for the subprocess. In this case this
* function should be overridden to return the number of degrees of
* freedom used in the generation. If \a doScale is false, it means
* that the actual virtuality of the extracted parton will be
* obtained from another source.
*/
virtual int nDim(const PartonBin & pb, bool doScale) const;
/**
* Generate the momentum of the extracted parton with the \a parent
* momentum given by the last argument. If the \a scale is negative,
* it means that the doScale in the previous call to nDim() was
* true, otherwise the given \a scale should be the virtuality of
* the extracted parton. Generated quantities which are not returned
* in the momentum may be saved in the PartonBinInstance, \a pb, for
* later use. In particular, if the nDim() random numbers, \a r, are
* not enough to generate with weight one, the resulting weight
* should be stored with the remnantWeight() method of the parton
* bin.
*/
virtual Lorentz5Momentum generate(PartonBinInstance & pb, const double * r,
Energy2 scale,
const LorentzMomentum & parent,
bool fixedPartonMomentum = false) const = 0;
/**
* Generate the momentum of the extracted parton with the \a parent
* momentum given by the last argument. If the \a scale is negative,
* it means that the doScale in the previous call to nDim() was
* true, otherwise the given \a scale should be the virtuality of
* the extracted parton. \a shat is the total invariant mass squared
* of the hard sub-system produced by the extracted parton and the
* primary parton entering from the other side. Generated quantities
* which are not returned in the momentum may be saved in the
* PartonBinInstance, \a pb, for later use. In particular, if the
* nDim() random numbers, \a r, are not enough to generate with
* weight one, the resulting weight should be stored with the
* remnantWeight() method of the parton bin.
*/
virtual Lorentz5Momentum generate(PartonBinInstance & pb, const double * r,
Energy2 scale, Energy2 shat,
const LorentzMomentum & parent,
bool fixedPartonMomentum = false) const = 0;
/**
* Boost the generated remnants to the proper momentum given the
* information in the parton bin, \a pb.
*/
virtual void boostRemnants(PartonBinInstance & pb) const;
/**
* Redo the remnant generation for the given particle bin, \a pb. If
* \a oldp is non-null it corresponds to the previously extracted
* parton which should be replaced by \a newp. If \a oldp is null it
* means \a newp should be extracted in addition to the previously
* extracted ones available in \a prev.
* @return false if the generation failed.
*/
virtual bool recreateRemnants(PartonBinInstance & pb, tPPtr oldp, tPPtr newp,
double newl, Energy2 scale,
const LorentzMomentum & p,
const PVector & prev = PVector()) const;
/**
* Redo the remnant generation for the given particle bin, \a pb. If
* \a oldp is non-null it corresponds to the previously extracted
* parton which should be replaced by \a newp. If \a oldp is null it
* means \a newp should be extracted in addition to the previously
* extracted ones available in \a prev. In either case \a shat is
* the total invariant mass squared of the hard sub-system produced
* by the extracted parton and the primary parton entering from the other
* side.
*
* @return false if the generation failed.
*/
virtual bool recreateRemnants(PartonBinInstance & pb, tPPtr oldp, tPPtr newp,
double newl, Energy2 scale,
Energy2 shat, const LorentzMomentum & p,
const PVector & prev = PVector()) const;
//@}
/**
* Return true if this remnant handler is able to handle multiple
* extractions of partons from the same particle.
*/
bool multiCapable() const { return isMultiCapable; }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interface.
*/
static void Init();
protected:
/**
* True if this handler can generate remnants also if several
* partons have been extracted.
*/
bool isMultiCapable;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static AbstractClassDescription<RemnantHandler> initRemnantHandler;
/**
* Private and non-existent assignment operator.
*/
RemnantHandler & operator=(const RemnantHandler &);
};
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the base classes
* of RemnantHandler. */
template <>
struct BaseClassTrait<RemnantHandler,1>: public ClassTraitsType {
/** Typedef of the first base class of RemnantHandler. */
typedef HandlerBase NthBase;
};
/** This template specialization informs ThePEG about the name of the
* RemnantHandler class. */
template <>
struct ClassTraits<RemnantHandler>: public ClassTraitsBase<RemnantHandler> {
/** Return a platform-independent class name */
static string className() { return "ThePEG::RemnantHandler"; }
};
/** @endcond */
}
#endif /* ThePEG_RemnantHandler_H */
|