/usr/include/tulip/GlShaderProgram.h is in libtulip-dev 4.6.0dfsg-2+b5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | /*
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
///@cond DOXYGEN_HIDDEN
#ifndef GL_SHADER_PROGRAM
#define GL_SHADER_PROGRAM
#if defined(_MSC_VER)
#include <Windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#else
#include <GL/gl.h>
#endif
#include <string>
#include <vector>
#include <tulip/tulipconf.h>
#include <tulip/Matrix.h>
#include <tulip/Color.h>
namespace tlp {
enum ShaderType {Vertex, Fragment, Geometry};
/**
* \brief A class to manage shader objects, components of a shader program
*
* This class allow to create and compile OpenGL shader object. Shaders are used to program the graphics processing unit (GPU) rendering pipeline.
* The three existing types of shaders are managed :
*
* -> Vertex shader : run once for each vertex given to the graphics processor. The purpose is to transform each vertex's 3D position in virtual space
* to the 2D coordinate at which it appears on the screen (as well as a depth value for the Z-buffer).
* Vertex shaders can manipulate properties such as position, color, and texture coordinate, but cannot create new vertices.
* The output of the vertex shader goes to the next stage in the pipeline, which is either a geometry shader if present or the rasterizer otherwise.
*
* -> Geometry shader : can add and remove vertices from a mesh. Geometry shaders can be used to generate geometry procedurally
* or to add volumetric detail to existing meshes that would be too costly to process on the CPU. If geometry shaders are being used,
* the output is then sent to the rasterizer.
*
* -> Fragment shader (Pixel shader) : calculate the color of individual pixels. The input to this stage comes from the rasterizer,
* which fills in the polygons being sent through the graphics pipeline.
*
* Shaders source codes have to be written with the "OpenGL Shading Language (GLSL)"
*/
class TLP_GL_SCOPE GlShader {
friend class GlShaderProgram;
public :
/**
* Vertex and Fragment shader constructor
*
* Use this constructor to create either a vertex shader or a fragment shader
*
* \param shaderType Type of the shader to create, Vertex or Fragment
*/
GlShader(ShaderType shaderType);
/**
* Geometry shader constructor
*
* Use this constructor to create a geometry shader
*
* \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
* (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
*
* \param outputPrimitiveType the type of graphics primitives the geometry shader will output
* (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
*/
GlShader(GLenum inputPrimitiveType, GLenum outputPrimitiveType);
/**
* GlShader destructor
*/
~GlShader();
/**
* Return the GL identifier of this shader object
*/
GLuint getShaderId() const {
return shaderObjectId;
}
/**
* Return the type of the shader (Vertex, Geometry or Fragment)
*/
ShaderType getShaderType() const {
return shaderType;
}
/**
* Method only relevant for geometry shaders. Return the graphic primitive type this geometry shader takes as input.
*/
GLenum getInputPrimitiveType() const {
return inputPrimitiveType;
}
/**
* Method only relevant for geometry shaders. Return the graphics primitives type this geometry shader will output.
*/
GLenum getOutputPrimitiveType() const {
return outputPrimitiveType;
}
/**
* Method only relevant for geometry shaders. Set the graphic primitive type this geometry shader takes as input.
* Note that when modifying the input primitive type, the associated shader program (whose object is from type GlShaderProgram)
* has to be relinked for changes to take effect.
*
* \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
* (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
*/
void setInputPrimitiveType(const GLenum inputPrimitiveType) {
this->inputPrimitiveType = inputPrimitiveType;
}
/**
* Method only relevant for geometry shaders. Set the graphics primitives type this geometry shader will output.
* Note that when modifying the output primitive type, the associated shader program (whose object is from type GlShaderProgram)
* has to be relinked for changes to take effect.
*
* \param outputPrimitiveType the type of graphics primitives the geometry shader will output
* (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
*/
void setOutputPrimitiveType(const GLenum outputPrimitiveType) {
this->outputPrimitiveType = outputPrimitiveType;
}
/**
* Set the shader source code from a C string and compile it.
*
* \param shaderSrc a C string containing the shader source code
*/
void compileFromSourceCode(const char *shaderSrc);
/**
* Set the shader source code from a C++ string and compile it.
*
* \param shaderSrc a C++ string containing the shader source code
*/
void compileFromSourceCode(const std::string &shaderSrc);
/**
* Set the shader source code from a file and compile it.
*
* \param shaderSrcFilename the absolute path of the file containing the shader source code
*/
void compileFromSourceFile(const std::string &shaderSrcFilename);
/**
* Return true if the shader compilation was successfull, false otherwise
*/
bool isCompiled() const {
return shaderCompiled;
}
/**
* Return the log output by the shader compiler
*/
std::string getCompilationLog() const {
return compilationLog;
}
private :
void setAnonymousCreation(const bool anonymousCreation) {
this->anonymousCreation = anonymousCreation;
}
bool anonymouslyCreated() const {
return anonymousCreation;
}
void compileShaderObject(const char *shaderSrc);
ShaderType shaderType;
GLuint shaderObjectId;
GLenum inputPrimitiveType, outputPrimitiveType;
bool shaderCompiled;
std::string compilationLog;
bool anonymousCreation;
};
/**
* \brief A class to manage OpenGL shader program.
*
* This class allows to create and use shader programs by linking several shader objects. At least one shader object must be
* provided in order to use the shader program. Multiple shader objects of the same type can be added but exactly one
* of these shader objects must have a main() function. As in C, in order to use a function defined in a separate shader object
* from another shader object, this function has to be declared with the same prototype in the source code of the last one.
*
* This class also allows to specify uniform and attribute variables values of the shader program.
*/
class TLP_GL_SCOPE GlShaderProgram {
public :
/**
* GlShaderProgram constructor
*
* \param name An optionnal name can be provided to identify the shader program
*/
GlShaderProgram(const std::string &name = "");
/**
* GlShaderProgram destructor
*/
~GlShaderProgram();
/**
* A static function which returns true if vertex and fragment shaders are supported by the host graphic card
*/
static bool shaderProgramsSupported();
/**
* A static function which returns true if geometry shaders are supported by the host graphic card
*/
static bool geometryShaderSupported();
/**
* A static function which returns the current active shader if any
*/
static GlShaderProgram *getCurrentActiveShader();
/**
* Return the string identifier of this shader program
*/
std::string getName() const {
return programName;
}
/**
* Return the OpenGL identifier of this shader program
*/
GLuint getShaderProgramId() const {
return programObjectId;
}
/**
* Add a shader object to this shader program
*
* \param shader the shader object to add to this shader program
*/
void addShader(GlShader *shader);
/**
* Remove a shader object from this shader program
* Note that the shader object will not be destroyed
*
* \param shader the shader object to remove from this shader program
*/
void removeShader(GlShader *shader);
/**
* remove all shaders from this shader program
*/
void removeAllShaders();
/**
* Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a C string
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param shaderType the type of the shader object to add (must be Vertex or Fragment)
* \param shaderSrc the C string containing the shader object source code
*/
void addShaderFromSourceCode(const ShaderType shaderType, const char *shaderSrc);
/**
* Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a C++ string
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param shaderType the type of the shader object to add (must be Vertex or Fragment)
* \param shaderSrc the C++ string containing the shader object source code
*/
void addShaderFromSourceCode(const ShaderType shaderType, const std::string &shaderSrc);
/**
* Convenient method to add a shader object (from type Vertex or Fragment) from a source code stored in a file
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param shaderType the type of the shader object to add (must be Vertex or Fragment)
* \param shaderSrcFilename the aboslute path to the file containing the shader object source code
*/
void addShaderFromSourceFile(const ShaderType shaderType, const std::string &shaderSrcFilename);
/**
* Convenient method to add a geometry shader object from a source code stored in a C string
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param geometryShaderSrc the C string containing the geometry shader object source code
* \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
* (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
*
* \param outputPrimitiveType the type of graphics primitives the geometry shader will output
* (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
*/
void addGeometryShaderFromSourceCode(const char *geometryShaderSrc, GLenum inputPrimitiveType, GLenum outputPrimitiveType);
/**
* Convenient method to add a geometry shader object from a source code stored in a C++ string
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param geometryShaderSrc the C++ string containing the geometry shader object source code
* \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
* (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
*
* \param outputPrimitiveType the type of graphics primitives the geometry shader will output
* (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
*/
void addGeometryShaderFromSourceCode(const std::string &geometryShaderSrc, GLenum inputPrimitiveType, GLenum outputPrimitiveType);
/**
* Convenient method to add a geometry shader object from a source code stored in a file
* The created shader object will be automatically destroyed when removing all attached shader objects
* or destroying the shader program
*
* \param geometryShaderSrcFilename the absolute path to the file containing the geometry shader object source code
* \param inputPrimitiveType the type of graphic primitive the geometry shader takes as input.
* (must be one from the following list : GL_POINTS, GL_LINES, GL_LINES_ADJACENCY_EXT, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY_EXT)
*
* \param outputPrimitiveType the type of graphics primitives the geometry shader will output
* (must be one of the following list : GL_POINTS, GL_LINE_STRIP, GL_TRIANGLE_STRIP)
*/
void addGeometryShaderFromSourceFile(const std::string &geometryShaderSrcFilename, GLenum inputPrimitiveType, GLenum outputPrimitiveType);
/**
* Link the shader program.
*/
void link();
/**
* return true if the shader program has been successfully linked, false otherwise
*/
bool isLinked() const {
return programLinked;
}
/**
* Print the info log containing errors and warnings related to shader objects compilation and shader program linkage
*/
void printInfoLog();
/**
* Activate the shader program. If the shader program has not been linked, the link method will be called.
*/
void activate();
/**
* Deactivate the shader program.
*/
void desactivate();
void setUniformFloat(const std::string &variateName, const float f);
void setUniformVec2Float(const std::string &variableName, const Vector<float, 2> &vec2f);
void setUniformVec2Float(const std::string &variableName, const float f1, const float f2);
void setUniformVec3Float(const std::string &variableName, const Vector<float, 3> &vec3f);
void setUniformVec3Float(const std::string &variableName, const float f1, const float f2, const float f3);
void setUniformVec4Float(const std::string &variableName, const Vector<float, 4> &vec4f);
void setUniformVec4Float(const std::string &variableName, const float f1, const float f2, const float f3, const float f4);
void setUniformMat2Float(const std::string &variableName, const Matrix<float, 2> &mat2f, const bool transpose = false);
void setUniformMat2Float(const std::string &variableName, const float *f, const bool transpose = false);
void setUniformMat3Float(const std::string &variableName, const Matrix<float, 3> &mat3f, const bool transpose = false);
void setUniformMat3Float(const std::string &variableName, const float *f, const bool transpose = false);
void setUniformMat4Float(const std::string &variableName, const Matrix<float, 4> &mat4f, const bool transpose = false);
void setUniformMat4Float(const std::string &variableName, const float *f, const bool transpose = false);
void setUniformInt(const std::string &variableName, const int f);
void setUniformVec2Int(const std::string &variableName, const Vector<int, 2> &vec2i);
void setUniformVec2Int(const std::string &variableName, const int i1, const int i2);
void setUniformVec3Int(const std::string &variableName, const Vector<int, 3> &vec3i);
void setUniformVec3Int(const std::string &variableName, const int i1, const int i2, const int i3);
void setUniformVec4Int(const std::string &variableName, const Vector<int, 4> &vec4i);
void setUniformVec4Int(const std::string &variableName, const int i1, const int i2, const int i3, const int i4);
void setUniformBool(const std::string &variableName, const bool b);
void setUniformVec2Bool(const std::string &variableName, const Array<bool, 2> &vec2b);
void setUniformVec2Bool(const std::string &variableName, const bool b1, const bool b2);
void setUniformVec3Bool(const std::string &variableName, const Array<bool, 3> &vec3b);
void setUniformVec3Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3);
void setUniformVec4Bool(const std::string &variableName, const Array<bool, 4> &vec4b);
void setUniformVec4Bool(const std::string &variableName, const bool i1, const bool i2, const bool i3, const bool i4);
void setAttributeFloat(const std::string &variableName, const float f);
void setAttributeVec2Float(const std::string &variableName, const Vector<float, 2> &vec2f);
void setAttributeVec2Float(const std::string &variableName, const float f1, const float f2);
void setAttributeVec3Float(const std::string &variableName, const Vector<float, 3> &vec3f);
void setAttributeVec3Float(const std::string &variableName, const float f1, const float f2, const float f3);
void setAttributeVec4Float(const std::string &variableName, const Vector<float, 4> &vec4f);
void setAttributeVec4Float(const std::string &variableName, const float f1, const float f2, const float f3, const float f4);
void setAttributeInt(const std::string &variableName, const int f);
void setAttributeVec2Int(const std::string &variableName, const Vector<int, 2> &vec2i);
void setAttributeVec2Int(const std::string &variableName, const int i1, const int i2);
void setAttributeVec3Int(const std::string &variableName, const Vector<int, 3> &vec3i);
void setAttributeVec3Int(const std::string &variableName, const int i1, const int i2, const int i3);
void setAttributeVec4Int(const std::string &variableName, const Vector<int, 4> &vec4i);
void setAttributeVec4Int(const std::string &variableName, const int i1, const int i2, const int i3, const int i4);
void setAttributeBool(const std::string &variableName, const bool b);
void setAttributeVec2Bool(const std::string &variableName, const Array<bool, 2> &vec2b);
void setAttributeVec2Bool(const std::string &variableName, const bool b1, const bool b2);
void setAttributeVec3Bool(const std::string &variableName, const Array<bool, 3> &vec3b);
void setAttributeVec3Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3);
void setAttributeVec4Bool(const std::string &variableName, const Array<bool, 4> &vec4b);
void setAttributeVec4Bool(const std::string &variableName, const bool b1, const bool b2, const bool b3, const bool b4);
void setUniformTextureSampler(const std::string &samplerVariateName, const int samplerId);
void setUniformColor(const std::string &variableName, const Color &color);
void setAttributeColor(const std::string &variableName, const Color &color);
template <unsigned int SIZE>
void setUniformFloatArray(const std::string &variableName, const Vector<float, SIZE> &vecf);
void setUniformFloatArray(const std::string &variableName, const unsigned int fCount, const float *f);
template <unsigned int SIZE>
void setUniformVec2FloatArray(const std::string &variableName, const Array<Vector<float, 2>, SIZE> &vecvec2f);
void setUniformVec2FloatArray(const std::string &variableName, const unsigned int vec2fCount, const float *f);
template <unsigned int SIZE>
void setUniformVec3FloatArray(const std::string &variableName, const Array<Vector<float, 3>, SIZE> &vecvec3f);
void setUniformVec3FloatArray(const std::string &variableName, const unsigned int vec3fCount, const float *f);
template <unsigned int SIZE>
void setUniformVec4FloatArray(const std::string &variableName, const Array<Vector<float, 4>, SIZE> &vecvec4f);
void setUniformVec4FloatArray(const std::string &variableName, const unsigned int vec4fCount, const float *f);
template <unsigned int SIZE>
void setUniformMat2FloatArray(const std::string &variableName, const Vector<Matrix<float, 2>, SIZE> &vecmat2f, const bool transpose = false);
void setUniformMat2FloatArray(const std::string &variableName, const unsigned int mat2fCount, const float *f, const bool transpose = false);
template <unsigned int SIZE>
void setUniformMat3FloatArray(const std::string &variableName, const Vector<Matrix<float, 3>, SIZE> &vecmat3f, const bool transpose = false);
void setUniformMat3FloatArray(const std::string &variableName, const unsigned int mat3fCount, const float *f, const bool transpose = false);
template <unsigned int SIZE>
void setUniformMat4FloatArray(const std::string &variableName, const Vector<Matrix<float, 4>, SIZE> &vecmat4f, const bool transpose = false);
void setUniformMat4FloatArray(const std::string &variableName, const unsigned int mat4fCount, const float *f, const bool transpose = false);
template <unsigned int SIZE>
void setUniformIntArray(const std::string &variableName, const Vector<int, SIZE> &veci);
void setUniformIntArray(const std::string &variableName, const unsigned int iCount, const int *i);
template <unsigned int SIZE>
void setUniformVec2IntArray(const std::string &variableName, const Array<Vector<int, 2>, SIZE> &vecvec2i);
void setUniformVec2IntArray(const std::string &variableName, const unsigned int vec2iCount, const int *i);
template <unsigned int SIZE>
void setUniformVec3IntArray(const std::string &variableName, const Array<Vector<int, 3>, SIZE> &vecvec3i);
void setUniformVec3IntArray(const std::string &variableName, const unsigned int vec3iCount, const int *i);
template <unsigned int SIZE>
void setUniformVec4IntArray(const std::string &variableName, const Array<Vector<int, 4>, SIZE> &vecvec4i);
void setUniformVec4IntArray(const std::string &variableName, const unsigned int vec4iCount, const int *i);
template <unsigned int SIZE>
void setUniformBoolArray(const std::string &variableName, const Array<bool, SIZE> &vecb);
void setUniformBoolArray(const std::string &variableName, const unsigned int bCount, const bool *b);
template <unsigned int SIZE>
void setUniformVec2BoolArray(const std::string &variableName, const Array<Array<bool, 2>, SIZE> &vecvec2b);
void setUniformVec2BoolArray(const std::string &variableName, const unsigned int vec2bCount, const bool *b);
template <unsigned int SIZE>
void setUniformVec3BoolArray(const std::string &variableName, const Array<Array<bool, 3>, SIZE> &vecvec3b);
void setUniformVec3BoolArray(const std::string &variableName, const unsigned int vec3bCount, const bool *b);
template <unsigned int SIZE>
void setUniformVec4BoolArray(const std::string &variableName, const Array<Array<bool, 4>, SIZE> &vecvec4b);
void setUniformVec4BoolArray(const std::string &variableName, const unsigned int vec4bCount, const bool *b);
void getUniformFloatVariableValue(const std::string &variableName, float *value);
void getUniformIntVariableValue(const std::string &variableName, int *value);
void getUniformBoolVariableValue(const std::string &variableName, bool *value);
void getUniformVec2BoolVariableValue(const std::string &variableName, bool *value);
void getUniformVec3BoolVariableValue(const std::string &variableName, bool *value);
void getUniformVec4BoolVariableValue(const std::string &variableName, bool *value);
// This method must be called before calling the link method to
// set the max number of vertices a geometry shader can output
// If not called, the maximum value is set when linking the shader program (not recommended for performance).
void setMaxGeometryShaderOutputVertices(const int maxOutputVertices);
private :
GLint getUniformVariableLocation(const std::string &variableName);
GLint getAttributeVariableLocation(const std::string &variableName);
std::string programName;
GLuint programObjectId;
std::string programLinkLog;
bool programLinked;
std::vector<GlShader *> attachedShaders;
int maxGeometryShaderOutputVertices;
static GlShaderProgram *currentActiveShaderProgram;
};
}
#endif // GL_SHADER_PROGRAM
///@endcond
|