This file is indexed.

/usr/include/tulip/QuadTree.h is in libtulip-dev 4.6.0dfsg-2+b5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
///@cond DOXYGEN_HIDDEN

#ifndef QUADTREE_H
#define QUADTREE_H

#include <vector>

#include <tulip/Rectangle.h>
#include <tulip/Coord.h>

namespace tlp {

/** \brief QuadTree template class
 *
 * This class provide QuadTree system
 */
template <class TYPE> class QuadTreeNode {

public:

  //======================================
  /*
     * build a new Quadtree
     * to work correctly box should be the bounding box
     * of all elements inserted in that QuadTree
     */
  /**
   * Contructor, you have to put the global bounding box of the quadtree
   */
  QuadTreeNode(const tlp::Rectangle<float> &box):_box(box) {
    assert(_box.isValid());

    for(int i=0; i<4; ++i)
      children[i] = 0;
  }
  /**
   * Basic destructor
   */
  ~QuadTreeNode() {
    for(int i=0; i<4; ++i)
      if (children[i] != NULL) delete children[i];
  }
  /**
   * Insert an element in the quadtree
   */
  void insert(const tlp::Rectangle<float> &box, const TYPE id) {
    assert(box.isValid());
    assert(_box.isValid());

    if (box[0]==box[1])
      return;

    //Check for infini recursion : check if we are on float limit case
    Vec2f subBox((_box[0]+_box[1])/2.f);

    if( !((subBox == _box[0]) || (subBox == _box[1]))) {
      for (int i=0; i<4; ++i) {
        if (getChildBox(i).isInside(box)) {
          QuadTreeNode *child=getChild(i);

          if(child)
            child->insert(box, id);
          else
            entities.push_back(id);

          return;
        }
      }
    }

    entities.push_back(id);
  }
  /**
   * return all elements that could be in
   * the given box (the function ensures that
   * all elements inside the box are return. However
   * some elements not inside the box can be returned.
   */
  void getElements(const tlp::Rectangle<float> &box, std::vector<TYPE> &result) const {
    assert(box.isValid());
    assert(_box.isValid());

    if (_box.intersect(box)) {
      for (size_t i=0; i<entities.size(); ++i) {
        result.push_back(entities[i]);
      }

      for (unsigned int i=0; i<4; ++i) {
        if (children[i]!=NULL)
          children[i]->getElements(box, result);
      }
    }
  }

  /**
   * Return all elements of the quadtree
   */
  void getElements(std::vector<TYPE> &result) const {
    for (size_t i=0; i<entities.size(); ++i) {
      result.push_back(entities[i]);
    }

    for (unsigned int i=0; i<4; ++i) {
      if (children[i]!=NULL)
        children[i]->getElements(result);
    }
  }

  /**
   * same as getElements, however if the size of the elements are to small compare
   * to the size of the box (equivalent to have severeal item at the same position on the screen)
   * only one elements is returned for the small cells.
   * The ratio should fixed according to the number of pixels displayed.
   * If we have a 1000*800 screen we can merge items of box into a single item if
   * the size of box is max(1000,800) times smaller than the box given in parameter.
   * so the ratio should be 1000.(merge elements that are 1000 times smaller
   */
  void getElementsWithRatio(const tlp::Rectangle<float> &box, std::vector<TYPE> &result, float ratio = 1000.) const {
    assert(_box.isValid());
    assert(box.isValid());

    if (_box.intersect(box)) {
      float xRatio = (box[1][0] - box[0][0]) / (_box[1][0] - _box[0][0]) ;
      float yRatio = (box[1][1] - box[0][1]) / (_box[1][1] - _box[0][1]);

      //elements are big enough and all of them must be displayed
      if (xRatio < ratio || yRatio < ratio) {
        for (size_t i=0; i<entities.size(); ++i) {
          result.push_back(entities[i]);
        }

        for (unsigned int i=0; i<4; ++i) {
          if (children[i]!=NULL)
            children[i]->getElementsWithRatio(box, result, ratio);
        }
      }
      //elements are too small return only one elements (we must seach it)
      else {
        bool find=false;

        if (entities.size() > 0) {
          result.push_back(entities[0]);
          find=true;
        }

        if(!find) {
          for (unsigned int i=0; i<4; ++i) {
            if (children[i]!=NULL && children[i]->_box.intersect(box)) {
              //if children[i]!=NULL we are sure to find an elements in that branch of the tree
              //thus we do not have to explore the other branches.
              children[i]->getElementsWithRatio(box, result, ratio);
              break;
            }
          }
        }
      }
    }
  }

private:
  //======================================
  QuadTreeNode* getChild(int i) {
    if (children[i] == 0) {
      Rectangle<float> box (getChildBox(i));

      if(box[0] ==_box[0] && box[1]==_box[1])
        return NULL;

      children[i] = new QuadTreeNode<TYPE>(box);
    }

    return children[i];
  }
  //======================================
  Rectangle<float> getChildBox(int i) {
    assert(_box.isValid());
    // A***I***B
    // *-------*
    // E---F---G
    // *-------*
    // *-------*
    // D***H***C
    // 0 => AIFE
    // 1 => IBGF
    // 2 => FGCH
    // 3 => FHDE
    Vec2f I;
    I[0] = (_box[0][0] + _box[1][0]) / 2.;
    I[1] = _box[0][1];
    Vec2f E;
    E[0] =  _box[0][0];
    E[1] = (_box[0][1] + _box[1][1]) / 2.;
    Vec2f F;
    F[0] = I[0];
    F[1] = E[1];
    Vec2f G;
    G[0] = _box[1][0];
    G[1] = F[1];
    Vec2f H;
    H[0] = F[0];
    H[1] = _box[1][1];

    switch(i) {
    case 0:
      return Rectangle<float>(_box[0], F);
      break;

    case 1:
      return Rectangle<float>(I, G);
      break;

    case 2:
      return Rectangle<float>(F, _box[1]);
      break;

    case 3:
      return Rectangle<float>(E, H);

    default:
      tlp::error() << "ERROR" << __PRETTY_FUNCTION__  << std::endl;
      exit(1);
    }
  }
  //======================================
  QuadTreeNode *children[4];
  std::vector<TYPE> entities;
  tlp::Rectangle<float> _box;
};

}

#endif // QUADTREE_H

///@endcond