This file is indexed.

/usr/include/uhd/usrp/multi_usrp.hpp is in libuhd-dev 3.7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
//
// Copyright 2010-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#ifndef INCLUDED_UHD_USRP_MULTI_USRP_HPP
#define INCLUDED_UHD_USRP_MULTI_USRP_HPP

//define API capabilities for compile time detection of new features
#define UHD_USRP_MULTI_USRP_REF_SOURCES_API
#define UHD_USRP_MULTI_USRP_GET_RATES_API
#define UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
#define UHD_USRP_MULTI_USRP_COMMAND_TIME_API
#define UHD_USRP_MULTI_USRP_BW_RANGE_API
#define UHD_USRP_MULTI_USRP_USER_REGS_API
#define UHD_USRP_MULTI_USRP_GET_USRP_INFO_API

#include <uhd/config.hpp>
#include <uhd/device.hpp>
#include <uhd/deprecated.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/stream_cmd.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/types/tune_result.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/subdev_spec.hpp>
#include <uhd/usrp/dboard_iface.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/utility.hpp>
#include <complex>
#include <string>
#include <vector>

namespace uhd{ namespace usrp{

/*!
 * The Multi-USRP device class:
 *
 * This class facilitates ease-of-use for most use-case scenarios.
 * The wrapper provides convenience functions to tune the devices,
 * set the dboard gains, antennas, filters, and other properties.
 * This class can be used to interface with a single USRP with
 * one or more channels, or multiple USRPs in a homogeneous setup.
 * All members take an optional parameter for board number or channel number.
 * In the single device, single channel case, these parameters can be unspecified.
 *
 * When using a single device with multiple channels:
 *  - Channel mapping is determined by the frontend specifications
 *  - All channels share a common RX sample rate
 *  - All channels share a common TX sample rate
 *
 * When using multiple devices in a configuration:
 *  - Channel mapping is determined by the device address arguments
 *  - All boards share a common RX sample rate
 *  - All boards share a common TX sample rate
 *  - All boards share a common RX frontend specification size
 *  - All boards share a common TX frontend specification size
 *  - All boards must have synchronized times (see the set_time_*() calls)
 *
 * Example to setup channel mapping for multiple devices:
 * <pre>
 *
 * //create a multi_usrp with two boards in the configuration
 * device_addr_t dev_addr;
 * dev_addr["addr0"] = "192.168.10.2"
 * dev_addr["addr1"] = "192.168.10.3";
 * multi_usrp::sptr dev = multi_usrp::make(dev_addr);
 *
 * //set the board on 10.2 to use the A RX frontend (RX channel 0)
 * dev->set_rx_subdev_spec("A:A", 0);
 *
 * //set the board on 10.3 to use the B RX frontend (RX channel 1)
 * dev->set_rx_subdev_spec("A:B", 1);
 *
 * //set both boards to use the AB TX frontend (TX channels 0 and 1)
 * dev->set_tx_subdev_spec("A:AB", multi_usrp::ALL_MBOARDS);
 *
 * //now that all the channels are mapped, continue with configuration...
 *
 * </pre>
 */
class UHD_API multi_usrp : boost::noncopyable{
public:
    typedef boost::shared_ptr<multi_usrp> sptr;

    //! A wildcard motherboard index
    static const size_t ALL_MBOARDS = size_t(~0);

    //! A wildcard channel index
    static const size_t ALL_CHANS = size_t(~0);

    //! A wildcard gain element name
    static const std::string ALL_GAINS;

    /*!
     * Make a new multi usrp from the device address.
     * \param dev_addr the device address
     * \return a new single usrp object
     */
    static sptr make(const device_addr_t &dev_addr);

    /*!
     * Get the underlying device object.
     * This is needed to get access to the streaming API and properties.
     * \return the device object within this single usrp
     */
    virtual device::sptr get_device(void) = 0;

    //! Convenience method to get a RX streamer. See also uhd::device::get_rx_stream().
    virtual rx_streamer::sptr get_rx_stream(const stream_args_t &args) = 0;

    //! Convenience method to get a TX streamer. See also uhd::device::get_rx_stream().
    virtual tx_streamer::sptr get_tx_stream(const stream_args_t &args) = 0;

    /*!
     * Returns identifying information about this USRP's configuration.
     * Returns motherboard ID, name, and serial.
     * Returns daughterboard RX ID, subdev name and spec, serial, and antenna.
     * \param chan channel index 0 to N-1
     * \return RX info
     */
    virtual dict<std::string, std::string> get_usrp_rx_info(size_t chan = 0) = 0;

    /*!
     * Returns identifying information about this USRP's configuration.
     * Returns motherboard ID, name, and serial.
     * Returns daughterboard TX ID, subdev name and spec, serial, and antenna.
     * \param chan channel index 0 to N-1
     * \return TX info
     */
     virtual dict<std::string, std::string> get_usrp_tx_info(size_t chan = 0) = 0;

    /*******************************************************************
     * Mboard methods
     ******************************************************************/

    /*!
     * Set the master clock rate.
     * This controls the rate of the clock that feeds the FPGA DSP.
     * On some devices, this re-tunes the clock to the specified rate.
     * If the specified rate is not available, this method will throw.
     * On other devices, this method notifies the software of the rate,
     * but requires the the user has made the necessary hardware change.
     * \param rate the new master clock rate in Hz
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_master_clock_rate(double rate, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the master clock rate.
     * \param mboard the motherboard index 0 to M-1
     * \return the master clock rate in Hz.
     */
    virtual double get_master_clock_rate(size_t mboard = 0) = 0;

    /*!
     * Get a printable summary for this USRP configuration.
     * \return a printable string
     */
    virtual std::string get_pp_string(void) = 0;

    /*!
     * Get canonical name for this USRP motherboard.
     * \param mboard which motherboard to query
     * \return a string representing the name
     */
    virtual std::string get_mboard_name(size_t mboard = 0) = 0;

    /*!
     * Get the current time in the usrp time registers.
     * \param mboard which motherboard to query
     * \return a timespec representing current usrp time
     */
    virtual time_spec_t get_time_now(size_t mboard = 0) = 0;

    /*!
     * Get the time when the last pps pulse occured.
     * \param mboard which motherboard to query
     * \return a timespec representing the last pps
     */
    virtual time_spec_t get_time_last_pps(size_t mboard = 0) = 0;

    /*!
     * Sets the time registers on the usrp immediately.
     *
     * If only one MIMO master is present in your configuration, set_time_now is
     * safe to use because the slave's time automatically follows the master's time.
     * Otherwise, this call cannot set the time synchronously across multiple devices.
     * Please use the set_time_next_pps or set_time_unknown_pps calls with a PPS signal.
     *
     * \param time_spec the time to latch into the usrp device
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_time_now(const time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Set the time registers on the usrp at the next pps tick.
     * The values will not be latched in until the pulse occurs.
     * It is recommended that the user sleep(1) after calling to ensure
     * that the time registers will be in a known state prior to use.
     *
     * Note: Because this call sets the time on the "next" pps,
     * the seconds in the time spec should be current seconds + 1.
     *
     * \param time_spec the time to latch into the usrp device
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_time_next_pps(const time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Synchronize the times across all motherboards in this configuration.
     * Use this method to sync the times when the edge of the PPS is unknown.
     *
     * Ex: Host machine is not attached to serial port of GPSDO
     * and can therefore not query the GPSDO for the PPS edge.
     *
     * This is a 2-step process, and will take at most 2 seconds to complete.
     * Upon completion, the times will be synchronized to the time provided.
     *
     * - Step1: wait for the last pps time to transition to catch the edge
     * - Step2: set the time at the next pps (synchronous for all boards)
     *
     * \param time_spec the time to latch at the next pps after catching the edge
     */
    virtual void set_time_unknown_pps(const time_spec_t &time_spec) = 0;

    /*!
     * Are the times across all motherboards in this configuration synchronized?
     * Checks that all time registers are approximately close but not exact,
     * given that the RTT may varying for a control packet transaction.
     * \return true when all motherboards time registers are in sync
     */
    virtual bool get_time_synchronized(void) = 0;

    /*!
     * Set the time at which the control commands will take effect.
     *
     * A timed command will back-pressure all subsequent timed commands,
     * assuming that the subsequent commands occur within the time-window.
     * If the time spec is late, the command will be activated upon arrival.
     *
     * \param time_spec the time at which the next command will activate
     * \param mboard which motherboard to set the config
     */
    virtual void set_command_time(const uhd::time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Clear the command time so future commands are sent ASAP.
     *
     * \param mboard which motherboard to set the config
     */
    virtual void clear_command_time(size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Issue a stream command to the usrp device.
     * This tells the usrp to send samples into the host.
     * See the documentation for stream_cmd_t for more info.
     *
     * With multiple devices, the first stream command in a chain of commands
     * should have a time spec in the near future and stream_now = false;
     * to ensure that the packets can be aligned by their time specs.
     *
     * \param stream_cmd the stream command to issue
     * \param chan the channel index 0 to N-1
     */
    virtual void issue_stream_cmd(const stream_cmd_t &stream_cmd, size_t chan = ALL_CHANS) = 0;

    /*!
     * Set the clock configuration for the usrp device.
     * DEPRECATED in favor of set time and clock source calls.
     * This tells the usrp how to get a 10Mhz reference and PPS clock.
     * See the documentation for clock_config_t for more info.
     * \param clock_config the clock configuration to set
     * \param mboard which motherboard to set the config
     */
    virtual void set_clock_config(const clock_config_t &clock_config, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Set the time source for the usrp device.
     * This sets the method of time synchronization,
     * typically a pulse per second or an encoded time.
     * Typical options for source: external, MIMO.
     * \param source a string representing the time source
     * \param mboard which motherboard to set the config
     */
    virtual void set_time_source(const std::string &source, const size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the currently set time source.
     * \param mboard which motherboard to get the config
     * \return the string representing the time source
     */
    virtual std::string get_time_source(const size_t mboard) = 0;

    /*!
     * Get a list of possible time sources.
     * \param mboard which motherboard to get the list
     * \return a vector of strings for possible settings
     */
    virtual std::vector<std::string> get_time_sources(const size_t mboard) = 0;

    /*!
     * Set the clock source for the usrp device.
     * This sets the source for a 10 Mhz reference clock.
     * Typical options for source: internal, external, MIMO.
     * \param source a string representing the clock source
     * \param mboard which motherboard to set the config
     */
    virtual void set_clock_source(const std::string &source, const size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the currently set clock source.
     * \param mboard which motherboard to get the config
     * \return the string representing the clock source
     */
    virtual std::string get_clock_source(const size_t mboard) = 0;

    /*!
     * Get a list of possible clock sources.
     * \param mboard which motherboard to get the list
     * \return a vector of strings for possible settings
     */
    virtual std::vector<std::string> get_clock_sources(const size_t mboard) = 0;

    /*!
     * Send the clock source to an output connector.
     * This call is only applicable on devices with reference outputs.
     * By default, the reference output will be enabled for ease of use.
     * This call may be used to enable or disable the output.
     * \param enb true to output the clock source.
     * \param mboard which motherboard to set
     */
    virtual void set_clock_source_out(const bool enb, const size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Send the time source to an output connector.
     * This call is only applicable on devices with PPS outputs.
     * By default, the PPS output will be enabled for ease of use.
     * This call may be used to enable or disable the output.
     * \param enb true to output the time source.
     * \param mboard which motherboard to set
     */
    virtual void set_time_source_out(const bool enb, const size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the number of USRP motherboards in this configuration.
     */
    virtual size_t get_num_mboards(void) = 0;

    /*!
     * Get a motherboard sensor value.
     * \param name the name of the sensor
     * \param mboard the motherboard index 0 to M-1
     * \return a sensor value object
     */
    virtual sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard = 0) = 0;

    /*!
     * Get a list of possible motherboard sensor names.
     * \param mboard the motherboard index 0 to M-1
     * \return a vector of sensor names
     */
    virtual std::vector<std::string> get_mboard_sensor_names(size_t mboard = 0) = 0;

    /*!
     * Perform write on the user configuration register bus. These only exist if
     * the user has implemented custom setting registers in the device FPGA.
     * \param addr 8-bit register address
     * \param data 32-bit register value
     * \param mboard which motherboard to set the user register
     */
    virtual void set_user_register(const boost::uint8_t addr, const boost::uint32_t data, size_t mboard = ALL_MBOARDS) = 0;

    /*******************************************************************
     * RX methods
     ******************************************************************/
    /*!
     * Set the RX frontend specification:
     * The subdev spec maps a physical part of a daughter-board to a channel number.
     * Set the subdev spec before calling into any methods with a channel number.
     * The subdev spec must be the same size across all motherboards.
     * \param spec the new frontend specification
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_rx_subdev_spec(const uhd::usrp::subdev_spec_t &spec, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the RX frontend specification.
     * \param mboard the motherboard index 0 to M-1
     * \return the frontend specification in use
     */
    virtual uhd::usrp::subdev_spec_t get_rx_subdev_spec(size_t mboard = 0) = 0;

    /*!
     * Get the number of RX channels in this configuration.
     * This is the number of USRPs times the number of RX channels per board,
     * where the number of RX channels per board is homogeneous among all USRPs.
     */
    virtual size_t get_rx_num_channels(void) = 0;

    /*!
     * Get the name of the RX frontend.
     * \param chan the channel index 0 to N-1
     * \return the frontend name
     */
    virtual std::string get_rx_subdev_name(size_t chan = 0) = 0;

    /*!
     * Set the RX sample rate.
     * \param rate the rate in Sps
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_rate(double rate, size_t chan = ALL_CHANS) = 0;

    /*!
     * Gets the RX sample rate.
     * \param chan the channel index 0 to N-1
     * \return the rate in Sps
     */
    virtual double get_rx_rate(size_t chan = 0) = 0;

    /*!
     * Get a range of possible RX rates.
     * \param chan the channel index 0 to N-1
     * \return the meta range of rates
     */
    virtual meta_range_t get_rx_rates(size_t chan = 0) = 0;

    /*!
     * Set the RX center frequency.
     * \param tune_request tune request instructions
     * \param chan the channel index 0 to N-1
     * \return a tune result object
     */
    virtual tune_result_t set_rx_freq(
        const tune_request_t &tune_request, size_t chan = 0
    ) = 0;

    /*!
     * Get the RX center frequency.
     * \param chan the channel index 0 to N-1
     * \return the frequency in Hz
     */
    virtual double get_rx_freq(size_t chan = 0) = 0;

    /*!
     * Get the RX center frequency range.
     * This range includes the overall tunable range of the RX chain,
     * including frontend chain and digital down conversion chain.
     * This tunable limit does not include the baseband bandwidth;
     * users should assume that the actual range is +/- samp_rate/2.
     * \param chan the channel index 0 to N-1
     * \return a frequency range object
     */
    virtual freq_range_t get_rx_freq_range(size_t chan = 0) = 0;

    /*!
     * Get the center frequency range of the RF frontend.
     * \param chan the channel index 0 to N-1
     * \return a frequency range object
     */
    virtual freq_range_t get_fe_rx_freq_range(size_t chan = 0) = 0;

    /*!
     * Set the RX gain value for the specified gain element.
     * For an empty name, distribute across all gain elements.
     * \param gain the gain in dB
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_gain(double gain, const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for setting overall RX gain
    void set_rx_gain(double gain, size_t chan = 0){
        return this->set_rx_gain(gain, ALL_GAINS, chan);
    }

    /*!
     * Get the RX gain value for the specified gain element.
     * For an empty name, sum across all gain elements.
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     * \return the gain in dB
     */
    virtual double get_rx_gain(const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for getting overall RX gain
    double get_rx_gain(size_t chan = 0){
        return this->get_rx_gain(ALL_GAINS, chan);
    }

    /*!
     * Get the RX gain range for the specified gain element.
     * For an empty name, calculate the overall gain range.
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     * \return a gain range object
     */
    virtual gain_range_t get_rx_gain_range(const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for getting overall RX gain range
    gain_range_t get_rx_gain_range(size_t chan = 0){
        return this->get_rx_gain_range(ALL_GAINS, chan);
    }

    /*!
     * Get the names of the gain elements in the RX chain.
     * Gain elements are ordered from antenna to FPGA.
     * \param chan the channel index 0 to N-1
     * \return a vector of gain element names
     */
    virtual std::vector<std::string> get_rx_gain_names(size_t chan = 0) = 0;

    /*!
     * Select the RX antenna on the frontend.
     * \param ant the antenna name
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_antenna(const std::string &ant, size_t chan = 0) = 0;

    /*!
     * Get the selected RX antenna on the frontend.
     * \param chan the channel index 0 to N-1
     * \return the antenna name
     */
    virtual std::string get_rx_antenna(size_t chan = 0) = 0;

    /*!
     * Get a list of possible RX antennas on the frontend.
     * \param chan the channel index 0 to N-1
     * \return a vector of antenna names
     */
    virtual std::vector<std::string> get_rx_antennas(size_t chan = 0) = 0;

    /*!
     * Get the locked status of the LO on the frontend.
     * \param chan the channel index 0 to N-1
     * \return true for locked
     */
    UHD_DEPRECATED bool get_rx_lo_locked(size_t chan = 0){
        return this->get_rx_sensor("lo_locked", chan).to_bool();
    }

    /*!
     * Set the RX bandwidth on the frontend.
     * \param bandwidth the bandwidth in Hz
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_bandwidth(double bandwidth, size_t chan = 0) = 0;

    /*!
     * Get the RX bandwidth on the frontend.
     * \param chan the channel index 0 to N-1
     * \return the bandwidth in Hz
     */
    virtual double get_rx_bandwidth(size_t chan = 0) = 0;

    /*!
     * Get the range of the possible RX bandwidth settings.
     * \param chan the channel index 0 to N-1
     * \return a range of bandwidths in Hz
     */
    virtual meta_range_t get_rx_bandwidth_range(size_t chan = 0) = 0;

    /*!
     * Read the RSSI value on the RX frontend.
     * \param chan the channel index 0 to N-1
     * \return the rssi in dB
     * \throw exception if RSSI readback not supported
     */
    UHD_DEPRECATED double read_rssi(size_t chan = 0){
        return this->get_rx_sensor("rssi", chan).to_real();
    }

    /*!
     * Get the dboard interface object for the RX frontend.
     * The dboard interface gives access to GPIOs, SPI, I2C, low-speed ADC and DAC.
     * Use at your own risk!
     * \param chan the channel index 0 to N-1
     * \return the dboard interface sptr
     */
    virtual dboard_iface::sptr get_rx_dboard_iface(size_t chan = 0) = 0;

    /*!
     * Get an RX frontend sensor value.
     * \param name the name of the sensor
     * \param chan the channel index 0 to N-1
     * \return a sensor value object
     */
    virtual sensor_value_t get_rx_sensor(const std::string &name, size_t chan = 0) = 0;

    /*!
     * Get a list of possible RX frontend sensor names.
     * \param chan the channel index 0 to N-1
     * \return a vector of sensor names
     */
    virtual std::vector<std::string> get_rx_sensor_names(size_t chan = 0) = 0;

    /*!
     * Enable/disable the automatic RX DC offset correction.
     * The automatic correction subtracts out the long-run average.
     *
     * When disabled, the averaging option operation is halted.
     * Once halted, the average value will be held constant
     * until the user re-enables the automatic correction
     * or overrides the value by manually setting the offset.
     *
     * \param enb true to enable automatic DC offset correction
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_dc_offset(const bool enb, size_t chan = ALL_CHANS) = 0;

    /*!
     * Set a constant RX DC offset value.
     * The value is complex to control both I and Q.
     * Only set this when automatic correction is disabled.
     * \param offset the dc offset (1.0 is full-scale)
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_dc_offset(const std::complex<double> &offset, size_t chan = ALL_CHANS) = 0;

    /*!
     * Set the RX frontend IQ imbalance correction.
     * Use this to adjust the magnitude and phase of I and Q.
     *
     * \param correction the complex correction (1.0 is full-scale)
     * \param chan the channel index 0 to N-1
     */
    virtual void set_rx_iq_balance(const std::complex<double> &correction, size_t chan = ALL_CHANS) = 0;

    /*******************************************************************
     * TX methods
     ******************************************************************/
    /*!
     * Set the TX frontend specification:
     * The subdev spec maps a physical part of a daughter-board to a channel number.
     * Set the subdev spec before calling into any methods with a channel number.
     * The subdev spec must be the same size across all motherboards.
     * \param spec the new frontend specification
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_tx_subdev_spec(const uhd::usrp::subdev_spec_t &spec, size_t mboard = ALL_MBOARDS) = 0;

    /*!
     * Get the TX frontend specification.
     * \param mboard the motherboard index 0 to M-1
     * \return the frontend specification in use
     */
    virtual uhd::usrp::subdev_spec_t get_tx_subdev_spec(size_t mboard = 0) = 0;

    /*!
     * Get the number of TX channels in this configuration.
     * This is the number of USRPs times the number of TX channels per board,
     * where the number of TX channels per board is homogeneous among all USRPs.
     */
    virtual size_t get_tx_num_channels(void) = 0;

    /*!
     * Get the name of the TX frontend.
     * \param chan the channel index 0 to N-1
     * \return the frontend name
     */
    virtual std::string get_tx_subdev_name(size_t chan = 0) = 0;

    /*!
     * Set the TX sample rate.
     * \param rate the rate in Sps
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_rate(double rate, size_t chan = ALL_CHANS) = 0;

    /*!
     * Gets the TX sample rate.
     * \param chan the channel index 0 to N-1
     * \return the rate in Sps
     */
    virtual double get_tx_rate(size_t chan = 0) = 0;

    /*!
     * Get a range of possible TX rates.
     * \param chan the channel index 0 to N-1
     * \return the meta range of rates
     */
    virtual meta_range_t get_tx_rates(size_t chan = 0) = 0;

    /*!
     * Set the TX center frequency.
     * \param tune_request tune request instructions
     * \param chan the channel index 0 to N-1
     * \return a tune result object
     */
    virtual tune_result_t set_tx_freq(
        const tune_request_t &tune_request, size_t chan = 0
    ) = 0;

    /*!
     * Get the TX center frequency.
     * \param chan the channel index 0 to N-1
     * \return the frequency in Hz
     */
    virtual double get_tx_freq(size_t chan = 0) = 0;

    /*!
     * Get the TX center frequency range.
     * This range includes the overall tunable range of the TX chain,
     * including frontend chain and digital up conversion chain.
     * This tunable limit does not include the baseband bandwidth;
     * users should assume that the actual range is +/- samp_rate/2.
     * \param chan the channel index 0 to N-1
     * \return a frequency range object
     */
    virtual freq_range_t get_tx_freq_range(size_t chan = 0) = 0;

    /*!
     * Get the center frequency range of the TX frontend.
     * \param chan the channel index 0 to N-1
     * \return a frequency range object
     */
    virtual freq_range_t get_fe_tx_freq_range(size_t chan = 0) = 0;

    /*!
     * Set the TX gain value for the specified gain element.
     * For an empty name, distribute across all gain elements.
     * \param gain the gain in dB
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_gain(double gain, const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for setting overall TX gain
    void set_tx_gain(double gain, size_t chan = 0){
        return this->set_tx_gain(gain, ALL_GAINS, chan);
    }

    /*!
     * Get the TX gain value for the specified gain element.
     * For an empty name, sum across all gain elements.
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     * \return the gain in dB
     */
    virtual double get_tx_gain(const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for getting overall TX gain
    double get_tx_gain(size_t chan = 0){
        return this->get_tx_gain(ALL_GAINS, chan);
    }

    /*!
     * Get the TX gain range for the specified gain element.
     * For an empty name, calculate the overall gain range.
     * \param name the name of the gain element
     * \param chan the channel index 0 to N-1
     * \return a gain range object
     */
    virtual gain_range_t get_tx_gain_range(const std::string &name, size_t chan = 0) = 0;

    //! A convenience wrapper for getting overall TX gain range
    gain_range_t get_tx_gain_range(size_t chan = 0){
        return this->get_tx_gain_range(ALL_GAINS, chan);
    }

    /*!
     * Get the names of the gain elements in the TX chain.
     * Gain elements are ordered from antenna to FPGA.
     * \param chan the channel index 0 to N-1
     * \return a vector of gain element names
     */
    virtual std::vector<std::string> get_tx_gain_names(size_t chan = 0) = 0;

    /*!
     * Select the TX antenna on the frontend.
     * \param ant the antenna name
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_antenna(const std::string &ant, size_t chan = 0) = 0;

    /*!
     * Get the selected TX antenna on the frontend.
     * \param chan the channel index 0 to N-1
     * \return the antenna name
     */
    virtual std::string get_tx_antenna(size_t chan = 0) = 0;

    /*!
     * Get a list of possible TX antennas on the frontend.
     * \param chan the channel index 0 to N-1
     * \return a vector of antenna names
     */
    virtual std::vector<std::string> get_tx_antennas(size_t chan = 0) = 0;

    /*!
     * Get the locked status of the LO on the frontend.
     * \param chan the channel index 0 to N-1
     * \return true for locked
     */
    UHD_DEPRECATED bool get_tx_lo_locked(size_t chan = 0){
        return this->get_tx_sensor("lo_locked", chan).to_bool();
    }

    /*!
     * Set the TX bandwidth on the frontend.
     * \param bandwidth the bandwidth in Hz
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_bandwidth(double bandwidth, size_t chan = 0) = 0;

    /*!
     * Get the TX bandwidth on the frontend.
     * \param chan the channel index 0 to N-1
     * \return the bandwidth in Hz
     */
    virtual double get_tx_bandwidth(size_t chan = 0) = 0;

    /*!
     * Get the range of the possible TX bandwidth settings.
     * \param chan the channel index 0 to N-1
     * \return a range of bandwidths in Hz
     */
    virtual meta_range_t get_tx_bandwidth_range(size_t chan = 0) = 0;

    /*!
     * Get the dboard interface object for the TX frontend.
     * The dboard interface gives access to GPIOs, SPI, I2C, low-speed ADC and DAC.
     * Use at your own risk!
     * \param chan the channel index 0 to N-1
     * \return the dboard interface sptr
     */
    virtual dboard_iface::sptr get_tx_dboard_iface(size_t chan = 0) = 0;

    /*!
     * Get an TX frontend sensor value.
     * \param name the name of the sensor
     * \param chan the channel index 0 to N-1
     * \return a sensor value object
     */
    virtual sensor_value_t get_tx_sensor(const std::string &name, size_t chan = 0) = 0;

    /*!
     * Get a list of possible TX frontend sensor names.
     * \param chan the channel index 0 to N-1
     * \return a vector of sensor names
     */
    virtual std::vector<std::string> get_tx_sensor_names(size_t chan = 0) = 0;

    /*!
     * Set a constant TX DC offset value.
     * The value is complex to control both I and Q.
     * \param offset the dc offset (1.0 is full-scale)
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_dc_offset(const std::complex<double> &offset, size_t chan = ALL_CHANS) = 0;

    /*!
     * Set the TX frontend IQ imbalance correction.
     * Use this to adjust the magnitude and phase of I and Q.
     *
     * \param correction the complex correction (1.0 is full-scale)
     * \param chan the channel index 0 to N-1
     */
    virtual void set_tx_iq_balance(const std::complex<double> &correction, size_t chan = ALL_CHANS) = 0;

    /*******************************************************************
     * GPIO methods
     ******************************************************************/

    /*!
     * Enumerate gpio banks on the specified device.
     * \param mboard the motherboard index 0 to M-1
     * \return a list of string for each bank name
     */
    virtual std::vector<std::string> get_gpio_banks(const size_t mboard) = 0;

    /*!
     * Set a GPIO attribute on a particular GPIO bank.
     * Possible attribute names:
     *  - CTRL - 1 for ATR mode 0 for GPIO mode
     *  - DDR - 1 for output 0 for input
     *  - OUT - GPIO output level (not ATR mode)
     *  - ATR_0X - ATR idle state
     *  - ATR_RX - ATR receive only state
     *  - ATR_TX - ATR transmit only state
     *  - ATR_XX - ATR full duplex state
     * \param bank the name of a GPIO bank
     * \param attr the name of a GPIO attribute
     * \param value the new value for this GPIO bank
     * \param mask the bit mask to effect which pins are changed
     * \param mboard the motherboard index 0 to M-1
     */
    virtual void set_gpio_attr(const std::string &bank, const std::string &attr, const boost::uint32_t value, const boost::uint32_t mask = 0xffffffff, const size_t mboard = 0) = 0;

    /*!
     * Get a GPIO attribute on a particular GPIO bank.
     * Possible attribute names:
     *  - CTRL - 1 for ATR mode 0 for GPIO mode
     *  - DDR - 1 for output 0 for input
     *  - OUT - GPIO output level (not ATR mode)
     *  - ATR_0X - ATR idle state
     *  - ATR_RX - ATR receive only state
     *  - ATR_TX - ATR transmit only state
     *  - ATR_XX - ATR full duplex state
     *  - READBACK - readback input GPIOs
     * \param bank the name of a GPIO bank
     * \param attr the name of a GPIO attribute
     * \param mboard the motherboard index 0 to M-1
     * \return the value set for this attribute
     */
    virtual boost::uint32_t get_gpio_attr(const std::string &bank, const std::string &attr, const size_t mboard = 0) = 0;

};

}}

#endif /* INCLUDED_UHD_USRP_MULTI_USRP_HPP */