This file is indexed.

/usr/include/vigra/watersheds3d.hxx is in libvigraimpex-dev 1.9.0+dfsg-10+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/************************************************************************/
/*                                                                      */
/*     Copyright 2006-2007 by F. Heinrich, B. Seppke, Ullrich Koethe    */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_watersheds3D_HXX
#define VIGRA_watersheds3D_HXX

#include "voxelneighborhood.hxx"
#include "multi_array.hxx"
#include "multi_localminmax.hxx"
#include "labelvolume.hxx"
#include "seededregiongrowing3d.hxx"
#include "watersheds.hxx"

namespace vigra
{

template <class SrcIterator, class SrcAccessor, class SrcShape,
          class DestIterator, class DestAccessor, class Neighborhood3D>
int preparewatersheds3D( SrcIterator s_Iter, SrcShape srcShape, SrcAccessor sa,
                         DestIterator d_Iter, DestAccessor da, Neighborhood3D)
{
    //basically needed for iteration and border-checks
    int w = srcShape[0], h = srcShape[1], d = srcShape[2];
    int x,y,z, local_min_count=0;
        
    //declare and define Iterators for all three dims at src
    SrcIterator zs = s_Iter;
    SrcIterator ys(zs);
    SrcIterator xs(ys);
        
    //Declare Iterators for all three dims at dest
    DestIterator zd = d_Iter;
        
    for(z = 0; z != d; ++z, ++zs.dim2(), ++zd.dim2())
    {
        ys = zs;
        DestIterator yd(zd);
        
        for(y = 0; y != h; ++y, ++ys.dim1(), ++yd.dim1())
        {
            xs = ys;
            DestIterator xd(yd);

            for(x = 0; x != w; ++x, ++xs.dim0(), ++xd.dim0())
            {
                AtVolumeBorder atBorder = isAtVolumeBorder(x,y,z,w,h,d);
                typename SrcAccessor::value_type v = sa(xs);
                // the following choice causes minima to point
                // to their lowest neighbor -- would this be better???
                // typename SrcAccessor::value_type v = NumericTraits<typename SrcAccessor::value_type>::max();
                int o = 0; // means center is minimum
                typename SrcAccessor::value_type my_v = v;
                if(atBorder == NotAtBorder)
                {
                    NeighborhoodCirculator<SrcIterator, Neighborhood3D>  c(xs), cend(c);
                    
                    do {
                        if(sa(c) < v)
                        {  
                            v = sa(c);
                            o = c.directionBit();
                        }
                        else if(sa(c) == my_v && my_v == v)
                        {
                            o =  o | c.directionBit();
                        }
                    }
                    while(++c != cend);
                }
                else
                {
                    RestrictedNeighborhoodCirculator<SrcIterator, Neighborhood3D>  c(xs, atBorder), cend(c);
                    do {
                        if(sa(c) < v)
                        {  
                            v = sa(c);
                            o = c.directionBit();
                        }
                        else if(sa(c) == my_v && my_v == v)
                        {
                            o =  o | c.directionBit();
                        }
                    }
                    while(++c != cend);
                }
                if (o==0) local_min_count++; 
                da.set(o, xd);
            }//end x-iteration
        }//end y-iteration
    }//end z-iteration
    return local_min_count;
}

template <class SrcIterator, class SrcAccessor,class SrcShape,
          class DestIterator, class DestAccessor,
          class Neighborhood3D>
unsigned int watershedLabeling3D( SrcIterator s_Iter, SrcShape srcShape, SrcAccessor sa,
                                  DestIterator d_Iter, DestAccessor da,
                                  Neighborhood3D)
{
    typedef typename DestAccessor::value_type LabelType;
    
    //basically needed for iteration and border-checks
    int w = srcShape[0], h = srcShape[1], d = srcShape[2];
    int x,y,z;
        
    //declare and define Iterators for all three dims at src
    SrcIterator zs = s_Iter;
    DestIterator zd = d_Iter;
        
    // temporary image to store region labels
    detail::UnionFindArray<LabelType> labels;
    
    // initialize the neighborhood traversers
    NeighborOffsetCirculator<Neighborhood3D> nc(Neighborhood3D::CausalFirst);
    NeighborOffsetCirculator<Neighborhood3D> nce(Neighborhood3D::CausalLast);
    ++nce;
    // pass 1: scan image from upper left front to lower right back
    // to find connected components

    // Each component will be represented by a tree of pixels. Each
    // pixel contains the scan order address of its parent in the
    // tree.  In order for pass 2 to work correctly, the parent must
    // always have a smaller scan order address than the child.
    // Therefore, we can merge trees only at their roots, because the
    // root of the combined tree must have the smallest scan order
    // address among all the tree's pixels/ nodes.  The root of each
    // tree is distinguished by pointing to itself (it contains its
    // own scan order address). This condition is enforced whenever a
    // new region is found or two regions are merged
    for(z = 0; z != d; ++z, ++zs.dim2(), ++zd.dim2())
    {
        SrcIterator ys = zs;
        DestIterator yd = zd;

        for(y = 0; y != h; ++y, ++ys.dim1(), ++yd.dim1())
        {
            SrcIterator xs = ys;
            DestIterator xd = yd;

            for(x = 0; x != w; ++x, ++xs.dim0(), ++xd.dim0())
            {
                LabelType currentLabel = labels.nextFreeLabel(); // default: new region    

                //check whether there is a special border treatment to be used or not
                AtVolumeBorder atBorder = isAtVolumeBorderCausal(x,y,z,w,h,d);
                    
                //We are not at the border!
                if(atBorder == NotAtBorder)
                {

                    nc = NeighborOffsetCirculator<Neighborhood3D>(Neighborhood3D::CausalFirst);
                
                    do
                    {            
                        //   Direction of NTraversr       Neighbor's direction bit is pointing
                        // = Direction of voxel           towards us?
                        if((sa(xs) & nc.directionBit()) || (sa(xs,*nc) & nc.oppositeDirectionBit()))
                        {
                            currentLabel = labels.makeUnion(da(xd,*nc), currentLabel);
                        }
                        ++nc;
                    }while(nc!=nce);
                }
                //we are at a border - handle this!!
                else
                {
                    nc = NeighborOffsetCirculator<Neighborhood3D>(Neighborhood3D::nearBorderDirectionsCausal(atBorder,0));
                    int j=0;
                    while(nc.direction() != Neighborhood3D::Error)
                    {
                        //   Direction of NTraversr       Neighbor's direction bit is pointing
                        // = Direction of voxel           towards us?
                        if((sa(xs) & nc.directionBit()) || (sa(xs,*nc) & nc.oppositeDirectionBit()))
                        {
                            currentLabel = labels.makeUnion(da(xd,*nc), currentLabel);
                        }
                        nc.turnTo(Neighborhood3D::nearBorderDirectionsCausal(atBorder,++j));
                    }
                }
                da.set(labels.finalizeLabel(currentLabel), xd);
            }
        }
    }

    unsigned int count = labels.makeContiguous();
    
    // pass 2: assign one label to each region (tree)
    // so that labels form a consecutive sequence 1, 2, ...
    zd = d_Iter;
    for(z=0; z != d; ++z, ++zd.dim2())
    {
        DestIterator yd(zd);

        for(y=0; y != h; ++y, ++yd.dim1())
        {
            DestIterator xd(yd);

            for(x = 0; x != w; ++x, ++xd.dim0())
            {
                da.set(labels[da(xd)], xd);
            }
        }
    }
    return count;
}


/** \addtogroup SeededRegionGrowing
*/
//@{

/** \brief Generate seeds for watershed computation and seeded region growing.

    The source image is a boundary indicator such as the gradient magnitude
    or the trace of the \ref boundaryTensor(). Seeds are generally generated
    at locations where the boundaryness (i.e. the likelihood of the point being on the
    boundary) is very small. In particular, seeds can be placed by either
    looking for local minima (possibly including minimal plateaus) of the boundaryness,
    of by looking at level sets (i.e. regions where the boundaryness is below a threshold).
    Both methods can also be combined, so that only minima below a threshold are returned.
    The particular seeding strategy is specified by the <tt>options</tt> object 
    (see \ref SeedOptions).
    
    The pixel type of the input image must be <tt>LessThanComparable</tt>.
    The pixel type of the output image must be large enough to hold the labels for all seeds.
    (typically, you will use <tt>UInt32</tt>). The function will label seeds by consecutive integers
    (starting from 1) and returns the largest label it used.
    
    Pass \ref vigra::EightNeighborCode or \ref vigra::FourNeighborCode to determine the 
    neighborhood where pixel values are compared. 
    
    The function uses accessors.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                               DestIterator upperleftd, DestAccessor da, 
                               Neighborhood neighborhood = EightNeighborCode(),
                               SeedOptions const & options = SeedOptions());
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class DestIterator, class DestAccessor,
                  class Neighborhood = EightNeighborCode>
        unsigned int
        generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                               pair<DestIterator, DestAccessor> dest, 
                               Neighborhood neighborhood = EightNeighborCode(),
                               SeedOptions const & options = SeedOptions());
    }
    \endcode

    <b> Usage:</b>

    <b>\#include</b> \<vigra/watersheds.hxx\><br>
    Namespace: vigra

    For detailed examples see watershedsRegionGrowing().
*/
doxygen_overloaded_function(template <...> unsigned int generateWatershedSeeds3D)

#if 0
template <unsigned int N, class T1, class C1, class T2, class C2>
          class Neighborhood>
unsigned int
generateWatershedSeeds3D(MultiArrayView<N, T1, C1> in, MultiArrayView<N, T2, C2> out,
                         Neighborhood neighborhood,
                         SeedOptions const & options = SeedOptions())
{
    using namespace functor;
    
    vigra_precondition(in.shape() == out.shape(),
        "generateWatershedSeeds3D(): Shape mismatch between input and output.");
        
    vigra_precondition(options.mini != SeedOptions::LevelSets || 
                       options.thresholdIsValid<SrcType>(),
        "generateWatershedSeeds3D(): SeedOptions.levelSets() must be specified with threshold.");
    
    MultiArray<N, UInt8> seeds(in.shape());
    
    if(options.mini == SeedOptions::LevelSets)
    {
        transformMultiArray(srcMultiArrayRange(in), destMultiArray(seeds),
                            ifThenElse(Arg1() <= Param(options.thresh), Param(1), Param(0)));
    }
    else
    {
        localMinima(in, seeds,
            LocalMinmaxOptions().neighborhood(Neighborhood::DirectionCount)
                                .markWith(1.0)
                                .threshold(options.thresh)
                                .allowAtBorder()
                                .allowPlateaus(options.mini == SeedOptions::ExtendedMinima));
    }
    
    return labelVolumeWithBackground(srcMultiArrayRange(seeds), destMultiArray(out), 
                                     neighborhood, 0);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
                       DestIterator upperleftd, DestAccessor da, 
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(upperlefts, lowerrights, sa, upperleftd, da, 
                                   EightNeighborCode(), options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class Neighborhood>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                       pair<DestIterator, DestAccessor> dest, 
                       Neighborhood neighborhood,
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   neighborhood, options);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                       pair<DestIterator, DestAccessor> dest, 
                       SeedOptions const & options = SeedOptions())
{
    return generateWatershedSeeds(src.first, src.second, src.third,
                                   dest.first, dest.second,    
                                   EightNeighborCode(), options);
}

#endif

/********************************************************/
/*                                                      */
/*                     watersheds3D                     */
/*                                                      */
/********************************************************/

/** \brief Region Segmentation by means of the watershed algorithm.

    <b> Declarations:</b>

    pass arguments explicitly:
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,class SrcShape,
                  class DestIterator, class DestAccessor,
                  class Neighborhood3D>
        unsigned int watersheds3D(SrcIterator s_Iter, SrcShape srcShape, SrcAccessor sa,
                                  DestIterator d_Iter, DestAccessor da,
                                  Neighborhood3D neighborhood3D);
    }
    \endcode

    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,class SrcShape,
                  class DestIterator, class DestAccessor,
                  class Neighborhood3D>
        unsigned int watersheds3D(triple<SrcIterator, SrcShape, SrcAccessor> src,
                                  pair<DestIterator, DestAccessor> dest,
                                  Neighborhood3D neighborhood3D);
    }
    \endcode

    use with 3D-Six-Neighborhood:
    \code
    namespace vigra {    
    
        template <class SrcIterator, class SrcAccessor,class SrcShape,
                  class DestIterator, class DestAccessor>
        unsigned int watersheds3DSix(triple<SrcIterator, SrcShape, SrcAccessor> src,
                                     pair<DestIterator, DestAccessor> dest);
                                    
    }
    \endcode

    use with 3D-TwentySix-Neighborhood:
    \code
    namespace vigra {    
    
        template <class SrcIterator, class SrcAccessor,class SrcShape,
                  class DestIterator, class DestAccessor>
        unsigned int watersheds3DTwentySix(triple<SrcIterator, SrcShape, SrcAccessor> src,
                                           pair<DestIterator, DestAccessor> dest);
                                    
    }
    \endcode

    This function implements the union-find version of the watershed algorithms
    as described in

    J. Roerdink, R. Meijster: "<em>The watershed transform: definitions, algorithms,
    and parallelization strategies</em>", Fundamenta Informaticae, 41:187-228, 2000

    The source volume is a boundary indicator such as the gradient magnitude
    of the trace of the \ref boundaryTensor(). Local minima of the boundary indicator
    are used as region seeds, and all other voxels are recursively assigned to the same 
    region as their lowest neighbor. Pass \ref vigra::NeighborCode3DSix or 
    \ref vigra::NeighborCode3DTwentySix to determine the neighborhood where voxel values 
    are compared. The voxel type of the input volume must be <tt>LessThanComparable</tt>.
    The function uses accessors. 
    
    ...probably soon in VIGRA:
    Note that VIGRA provides an alternative implementation of the watershed transform via
    \ref seededRegionGrowing3D(). It is slower, but handles plateaus better 
    and allows to keep a one pixel wide boundary between regions.
    
    <b> Usage:</b>

    <b>\#include</b> \<vigra/watersheds3D.hxx\><br>
    Namespace: vigra

    Example: watersheds3D of the gradient magnitude.

    \code
    typedef vigra::MultiArray<3,int> IntVolume;
    typedef vigra::MultiArray<3,double> DVolume;
    DVolume src(DVolume::difference_type(w,h,d));
    IntVolume dest(IntVolume::difference_type(w,h,d));

    float gauss=1;

    vigra::MultiArray<3, vigra::TinyVector<float,3> > temp(IntVolume::difference_type(w,h,d));
    vigra::gaussianGradientMultiArray(srcMultiArrayRange(vol),destMultiArray(temp),gauss);

    IntVolume::iterator temp_iter=temp.begin();
    for(DVolume::iterator iter=src.begin(); iter!=src.end(); ++iter, ++temp_iter)
        *iter = norm(*temp_iter);
    
    // find 6-connected regions
    int max_region_label = vigra::watersheds3DSix(srcMultiArrayRange(src), destMultiArray(dest));

    // find 26-connected regions
    max_region_label = vigra::watersheds3DTwentySix(srcMultiArrayRange(src), destMultiArray(dest));
    
    \endcode

    <b> Required Interface:</b>

    \code
    SrcIterator src_begin;
    SrcShape src_shape;
    DestIterator dest_begin;

    SrcAccessor src_accessor;
    DestAccessor dest_accessor;
    
    // compare src values
    src_accessor(src_begin) <= src_accessor(src_begin)

    // set result
    int label;
    dest_accessor.set(label, dest_begin);
    \endcode
*/
doxygen_overloaded_function(template <...> unsigned int watersheds3D)

template <class SrcIterator, class SrcAccessor, class SrcShape,
          class DestIterator, class DestAccessor,
          class Neighborhood3D>
unsigned int watersheds3D( SrcIterator s_Iter, SrcShape srcShape, SrcAccessor sa,
                           DestIterator d_Iter, DestAccessor da, Neighborhood3D neighborhood3D)
{
    //create temporary volume to store the DAG of directions to minima
    if ((int)Neighborhood3D::DirectionCount>7){  //If we have 3D-TwentySix Neighborhood
        
        vigra::MultiArray<3,int> orientationVolume(srcShape);

        preparewatersheds3D( s_Iter, srcShape, sa, 
                             destMultiArray(orientationVolume).first, destMultiArray(orientationVolume).second,
                             neighborhood3D);
     
        return watershedLabeling3D( srcMultiArray(orientationVolume).first, srcShape, srcMultiArray(orientationVolume).second,
                                    d_Iter, da,
                                    neighborhood3D);
    }
    else{
                
        vigra::MultiArray<3,unsigned char> orientationVolume(srcShape);

        preparewatersheds3D( s_Iter, srcShape, sa, 
                              destMultiArray(orientationVolume).first, destMultiArray(orientationVolume).second,
                              neighborhood3D);
     
        return watershedLabeling3D( srcMultiArray(orientationVolume).first, srcShape, srcMultiArray(orientationVolume).second,
                                    d_Iter, da,
                                    neighborhood3D);
    }
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int watersheds3DSix( vigra::triple<SrcIterator, SrcShape, SrcAccessor> src, 
                                     vigra::pair<DestIterator, DestAccessor> dest)
{
    return watersheds3D(src.first, src.second, src.third, dest.first, dest.second, NeighborCode3DSix());
}

template <class SrcIterator, class SrcShape, class SrcAccessor,
          class DestIterator, class DestAccessor>
inline unsigned int watersheds3DTwentySix( vigra::triple<SrcIterator, SrcShape, SrcAccessor> src, 
                                           vigra::pair<DestIterator, DestAccessor> dest)
{
    return watersheds3D(src.first, src.second, src.third, dest.first, dest.second, NeighborCode3DTwentySix());
}

}//namespace vigra

#endif //VIGRA_watersheds3D_HXX