This file is indexed.

/usr/bin/vipsprofile is in libvips-tools 7.40.6-2+b1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#!/usr/bin/python

import re
import math
import cairo

class ReadFile:
    def __init__(self, filename):
        self.filename = filename

    def __enter__(self):
        self.f = open(self.filename, 'r') 
        self.lineno = 0
        self.getnext();
        return self

    def __exit__(self, type, value, traceback):
        self.f.close()

    def __nonzero__(self):
        return self.line != ""

    def getnext(self):
        self.lineno += 1
        self.line = self.f.readline()

def read_times(rf):
    times = []

    while True:
        match = re.match('[+-]?[0-9]+ ', rf.line)
        if not match:
            break
        times += [int(x) for x in re.split(' ', rf.line.rstrip())]
        rf.getnext()

    return times[::-1]

class Thread:
    thread_number = 0

    def __init__(self, thread_name):
        # no one cares about the thread address
        match = re.match('(.*) \(0x.*?\) (.*)', thread_name)
        if match:
            thread_name = match.group(1) + " " + match.group(2)

        self.thread_name = thread_name
        self.thread_number = Thread.thread_number
        self.all_events = []
        self.workwait_events = []
        self.memory_events = []
        self.other_events = []
        Thread.thread_number += 1

all_events = []

class Event:
    def __init__(self, thread, gate_location, gate_name, start, stop):
        self.thread = thread
        self.gate_location = gate_location
        self.gate_name = gate_name

        self.work = False
        self.wait = False
        self.memory = False
        if gate_location == "memory":
            self.memory = True
        elif re.match('.*work.*', gate_name):
            self.work = True
        elif re.match('.*wait.*', gate_name):
            self.wait = True

        if self.memory:
            self.start = start
            self.stop = start
            self.size = stop
        else:
            self.start = start
            self.stop = stop

        thread.all_events.append(self)
        all_events.append(self)
        if self.wait or self.work:
            thread.workwait_events.append(self)
        elif self.memory:
            thread.memory_events.append(self)
        else:
            thread.other_events.append(self)

input_filename = 'vips-profile.txt'

thread_id = 0
threads = []
n_events = 0
print 'reading from', input_filename
with ReadFile(input_filename) as rf:
    while rf:
        if rf.line.rstrip() == "":
            rf.getnext()
            continue
        if rf.line[0] == "#":
            rf.getnext()
            continue

        match = re.match('thread: (.*)', rf.line)
        if not match:
            print 'parse error line %d, expected "thread"' % rf.lineno
        thread_name = match.group(1) + " " + str(thread_id)
        thread_id += 1
        thread = Thread(thread_name)
        threads.append(thread)
        rf.getnext()

        while True:
            match = re.match('^gate: (.*?)(: (.*))?$', rf.line)
            if not match:
                break
            gate_location = match.group(1)
            gate_name = match.group(3)
            rf.getnext()

            match = re.match('start:', rf.line)
            if not match:
                continue
            rf.getnext()

            start = read_times(rf)

            match = re.match('stop:', rf.line)
            if not match:
                continue
            rf.getnext()

            stop = read_times(rf)

            if len(start) != len(stop):
                print 'start and stop length mismatch'

            for a, b in zip(start, stop):
                Event(thread, gate_location, gate_name, a, b)
                n_events += 1

for thread in threads:
    thread.all_events.sort(lambda x, y: cmp(x.start, y.start))
    thread.workwait_events.sort(lambda x, y: cmp(x.start, y.start))
    thread.memory_events.sort(lambda x, y: cmp(x.start, y.start))
    thread.other_events.sort(lambda x, y: cmp(x.start, y.start))

all_events.sort(lambda x, y: cmp(x.start, y.start))

print 'loaded %d events' % n_events

# move time axis to secs of computation
ticks_per_sec = 1000000.0
first_time = all_events[0].start
last_time = 0
for event in all_events:
    if event.start < first_time:
        first_time = event.start
    if event.stop > last_time:
        last_time = event.stop

for event in all_events:
    event.start = (event.start - first_time) / ticks_per_sec
    event.stop = (event.stop - first_time) / ticks_per_sec

last_time = (last_time - first_time) / ticks_per_sec
first_time = 0

print 'total time =', last_time

# calculate some simple stats
for thread in threads:
    thread.start = last_time
    thread.stop = 0
    thread.wait = 0
    thread.work = 0
    thread.mem = 0
    thread.peak_mem = 0
    for event in thread.all_events:
        if event.start < thread.start:
            thread.start = event.start
        if event.stop > thread.stop:
            thread.stop = event.stop
        if event.wait:
            thread.wait += event.stop - event.start
        if event.work:
            thread.work += event.stop - event.start
        if event.memory:
            thread.mem += event.size
            if thread.mem > thread.peak_mem:
                thread.peak_mem = thread.mem

    thread.alive = thread.stop - thread.start

    # hide very short-lived threads 
    thread.hide = thread.alive < 0.01

print 'name\t\talive\twait%\twork%\tunkn%\tmemory\tpeakm'
for thread in threads:
    if thread.hide:
        continue

    wait_percent = 100 * thread.wait / thread.alive
    work_percent = 100 * thread.work / thread.alive
    unkn_percent = 100 - 100 * (thread.work + thread.wait) / thread.alive

    print '%13s\t%6.2g\t' % (thread.thread_name, thread.alive),
    print '%.3g\t%.3g\t%.3g\t' % (wait_percent, work_percent, unkn_percent),
    print '%.3g\t' % (float(thread.mem) / (1024 * 1024)),
    print '%.3g\t' % (float(thread.peak_mem) / (1024 * 1024))

mem = 0
peak_mem = 0
for event in all_events:
    if event.memory:
        mem += event.size
        if mem > peak_mem:
            peak_mem = mem

print 'peak memory = %.3g MB' % (float(peak_mem) / (1024 * 1024))
if mem != 0:
    print 'leak! final memory = %.3g MB' % (float(mem) / (1024 * 1024))

# does a list of events contain an overlap? 
# assume the list of events has been sorted by start time
def events_overlap(events):
    for i in range(0, len(events) - 1):
        # we can't just test for stop1 > start2 since one (or both) events 
        # might have duration zero
        event1 = events[i]
        event2 = events[i + 1]
        overlap_start = max(event1.start, event2.start)
        overlap_stop = min(event1.stop, event2.stop)
        if overlap_stop - overlap_start > 0:
            return True

    return False

# do the events on two gates overlap?
def gates_overlap(events, gate_name1, gate_name2):
    merged = []

    for event in events:
        if event.gate_name == gate_name1 or event.gate_name == gate_name2:
            merged.append(event)

    merged.sort(lambda x, y: cmp(x.start, y.start))

    return events_overlap(merged)

# allocate a y position for each gate
total_y = 0
for thread in threads:
    if thread.hide:
        continue

    thread.total_y = total_y

    gate_positions = {}

    # first pass .. move work and wait events to y == 0
    if events_overlap(thread.workwait_events):
        print 'gate overlap on thread', thread.thread_name
        for i in range(0, len(thread.workwait_events) - 1):
            event1 = thread.workwait_events[i]
            event2 = thread.workwait_events[i + 1]
            overlap_start = max(event1.start, event2.start)
            overlap_stop = min(event1.stop, event2.stop)
            if overlap_stop - overlap_start > 0:
                print 'overlap:'
                print 'event', event1.gate_location, event1.gate_name, 
                print 'starts at', event1.start, 'stops at', event1.stop
                print 'event', event2.gate_location, event2.gate_name, 
                print 'starts at', event2.start, 'stops at', event2.stop

    for event in thread.workwait_events:
        gate_positions[event.gate_name] = 0
        event.y = 0
        event.total_y = total_y

    for event in thread.memory_events:
        gate_positions[event.gate_name] = 0
        event.y = 0
        event.total_y = total_y

    # second pass: move all other events to non-overlapping ys
    y = 1
    for event in thread.other_events:
        if not event.gate_name in gate_positions:
            # look at all the ys we've allocated previously and see if we can 
            # add this gate to one of them
            for gate_y in range(1, y):
                found_overlap = False
                for gate_name in gate_positions:
                    if gate_positions[gate_name] != gate_y:
                        continue

                    if gates_overlap(thread.other_events, event.gate_name, gate_name):
                        found_overlap = True
                        break

                if not found_overlap:
                    gate_positions[event.gate_name] = gate_y
                    break

            # failure? add a new y
            if not event.gate_name in gate_positions:
                gate_positions[event.gate_name] = y
                y += 1

        event.y = gate_positions[event.gate_name]

    # third pass: flip the order of the ys to get the lowest-level ones at the
    # top, next to the wait/work line
    for event in thread.other_events:
        event.y = y - event.y
        event.total_y = total_y + event.y

    total_y += y

PIXELS_PER_SECOND = 1000
PIXELS_PER_GATE = 20
LEFT_BORDER = 130
BAR_HEIGHT = 5
MEM_HEIGHT = 100
WIDTH = int(LEFT_BORDER + last_time * PIXELS_PER_SECOND) + 20
HEIGHT = int(total_y * PIXELS_PER_GATE) + MEM_HEIGHT + 30

output_filename = "vips-profile.svg"
print 'writing to', output_filename

surface = cairo.SVGSurface(output_filename, WIDTH, HEIGHT)

ctx = cairo.Context(surface)
ctx.select_font_face('Sans')
ctx.set_font_size(15)

ctx.rectangle(0, 0, WIDTH, HEIGHT)
ctx.set_source_rgba(0.0, 0.0, 0.3, 1.0)
ctx.fill()

def draw_event(ctx, event):
    left = event.start * PIXELS_PER_SECOND + LEFT_BORDER
    top = event.total_y * PIXELS_PER_GATE + BAR_HEIGHT / 2 
    width = (event.stop - event.start) * PIXELS_PER_SECOND 
    height = BAR_HEIGHT

    if event.memory:
        width = 1
        height /= 2
        top += BAR_HEIGHT

    ctx.rectangle(left, top, width, height)

    if event.wait:
        ctx.set_source_rgb(0.9, 0.1, 0.1)
    elif event.work:
        ctx.set_source_rgb(0.1, 0.9, 0.1)
    elif event.memory:
        ctx.set_source_rgb(1.0, 1.0, 1.0)
    else:
        ctx.set_source_rgb(0.1, 0.1, 0.9)

    ctx.fill()

    if not event.wait and not event.work and not event.memory:
        xbearing, ybearing, twidth, theight, xadvance, yadvance = \
                ctx.text_extents(event.gate_name)
        ctx.move_to(left + width / 2 - twidth / 2, top + 3 * BAR_HEIGHT)
        ctx.set_source_rgb(1.00, 0.83, 0.00)
        ctx.show_text(event.gate_name)

for thread in threads:
    if thread.hide:
        continue

    ctx.rectangle(0, thread.total_y * PIXELS_PER_GATE, WIDTH, 1)
    ctx.set_source_rgb(1.00, 1.00, 1.00)
    ctx.fill()

    xbearing, ybearing, twidth, theight, xadvance, yadvance = \
            ctx.text_extents(thread.thread_name)
    ctx.move_to(0, theight + thread.total_y * PIXELS_PER_GATE + BAR_HEIGHT / 2)
    ctx.set_source_rgb(1.00, 1.00, 1.00)
    ctx.show_text(thread.thread_name)

    for event in thread.all_events:
        draw_event(ctx, event)

memory_y = total_y * PIXELS_PER_GATE

label = "memory"
xbearing, ybearing, twidth, theight, xadvance, yadvance = \
        ctx.text_extents(label)
ctx.move_to(0, memory_y + theight + 8)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.show_text(label)

mem = 0
ctx.move_to(LEFT_BORDER, memory_y + MEM_HEIGHT)

for event in all_events:
    if event.memory:
        mem += event.size

        left = LEFT_BORDER + event.start * PIXELS_PER_SECOND
        top = memory_y + MEM_HEIGHT - (MEM_HEIGHT * mem / peak_mem)

        ctx.line_to(left, top)

ctx.set_line_width(1)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.stroke()

axis_y = total_y * PIXELS_PER_GATE + MEM_HEIGHT

ctx.rectangle(LEFT_BORDER, axis_y, last_time * PIXELS_PER_SECOND, 1)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.fill()

label = "time"
xbearing, ybearing, twidth, theight, xadvance, yadvance = \
        ctx.text_extents(label)
ctx.move_to(0, axis_y + theight + 8)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.show_text(label)

for t in range(0, int(last_time * PIXELS_PER_SECOND), PIXELS_PER_SECOND / 10):
    left = t + LEFT_BORDER
    top = axis_y

    ctx.rectangle(left, top, 1, 5)
    ctx.set_source_rgb(1.00, 1.00, 1.00)
    ctx.fill()

    label = str(float(t) / PIXELS_PER_SECOND)
    xbearing, ybearing, twidth, theight, xadvance, yadvance = \
            ctx.text_extents(label)
    ctx.move_to(left - twidth / 2, top + theight + 8)
    ctx.set_source_rgb(1.00, 1.00, 1.00)
    ctx.show_text(label)

surface.finish()