/usr/include/visp/vpDot2.h is in libvisp-dev 2.9.0-3+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | /****************************************************************************
*
* $Id: vpDot2.h 2135 2009-04-29 13:51:31Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Track a white dot.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
/*
\file vpDot2.h
\brief This tracker is meant to track some zones on a vpImage.
*/
#ifndef vpDot2_hh
#define vpDot2_hh
#include <visp/vpImage.h>
#include <visp/vpRect.h>
#include <visp/vpTracker.h>
#include <visp/vpColor.h>
#include <visp/vpImagePoint.h>
#include <vector>
#include <list>
/*!
\class vpDot2
\ingroup TrackingImageBasic
\brief This tracker is meant to track a blob (connex pixels with same
gray level) on a vpImage.
The underground algorithm is based on a binarisation of the image
and then on a contour detection using the Freeman chain coding to
determine the blob characteristics (location, moments, size...).
The binarisation is done using gray level minimum and maximum values
that define the admissible gray levels of the blob. You can specify these
levels by setGrayLevelMin() and setGrayLevelMax(). These levels are also
set automatically by setGrayLevelPrecision(). The algorithm allows
to track white objects on a black background and vice versa.
When a blob is found, some tests are done to see if it is valid:
- A blob is considered by default as ellipsoid. The found blob could
be rejected if the shape is not ellipsoid. To determine if the shape
is ellipsoid the algorithm consider an inner and outside ellipse.
Sampled points on these two ellipses should have the right gray levels.
Along the inner ellipse the sampled points should have gray levels
that are in the gray level minimum and maximum bounds, while
on the outside ellipse, the gray levels should be out of the gray level
bounds. To set the percentage of the sample points which should have the right
levels use setEllipsoidBadPointsPercentage(). The distance between the
inner ellpsoid and the blob contour, as well the distance between the
blob contour and the outside ellipse is fixed by setEllipsoidShapePrecision().
If you want to track a non ellipsoid shape, and turn off this validation test,
you have to call setEllipsoidShapePrecision(0).
- The width, height and surface of the blob are compared to the
corresponding values of the previous blob. If they differ to much
the blob could be rejected. To set the admissible distance you can
use setSizePrecision().
Note that track() and searchDotsInArea() are the most important features
of this class.
- track() estimate the current position of the dot using its previous
position, then try to compute the new parameters of the dot. If everything
went ok, tracking succeeds, otherwise we search this dot in a window
around the last position of the dot.
- searchDotsInArea() enable to find dots similar to this dot in a window. It
is used when there was a problem performing basic tracking of the dot, but
can also be used to find a certain type of dots in the full image.
The following sample code available in tutorial-blob-tracker.cpp shows how to
grab images from a firewire camera, track a blob and display the tracking
results.
\include tutorial-blob-tracker.cpp
A line by line explanation of the previous example is provided in
\ref tutorial-tracking-blob.
This other example available in tutorial-blob-auto-tracker.cpp shows firstly
how to detect in the first image all the blobs that match some characteristics
in terms of size, area, gray level. Secondly, it shows how to track all the
dots that are detected.
\include tutorial-blob-auto-tracker.cpp
A line by line explanation of this last example is also provided in
\ref tutorial-tracking-blob, section \ref tracking_blob_tracking.
\sa vpDot
*/
class VISP_EXPORT vpDot2 : public vpTracker
{
public:
vpDot2();
vpDot2(const vpImagePoint &ip) ;
vpDot2(const vpDot2& twinDot );
virtual ~vpDot2();
static vpMatrix defineDots(vpDot2 dot[], const unsigned int &n, const std::string &dotFile, vpImage<unsigned char> &I, vpColor col = vpColor::blue, bool trackDot = true);
void display(const vpImage<unsigned char>& I, vpColor color = vpColor::red,
unsigned int thickness=1) const;
double getArea() const;
/*!
Return the dot bounding box.
\sa getWidth(), getHeight()
*/
inline vpRect getBBox() const {
vpRect bbox;
bbox.setRect(this->bbox_u_min,
this->bbox_v_min,
this->bbox_u_max - this->bbox_u_min + 1,
this->bbox_v_max - this->bbox_v_min + 1);
return (bbox);
};
/*!
Return the location of the dot center of gravity.
\return The coordinates of the center of gravity.
*/
inline vpImagePoint getCog() const {
return cog;
}
double getDistance( const vpDot2& distantDot ) const;
/*!
Return the list of all the image points on the dot
border.
\param edges_list : The list of all the images points on the dot
border. This list is update after a call to track().
*/
void getEdges(std::list<vpImagePoint> &edges_list) const {
edges_list = this->ip_edges_list;
};
/*!
Return the list of all the image points on the dot
border.
\return The list of all the images points on the dot
border. This list is update after a call to track().
*/
std::list<vpImagePoint> getEdges() const {
return(this->ip_edges_list);
};
/*!
Get the percentage of sampled points that are considered non conform
in terms of the gray level on the inner and the ouside ellipses.
\sa setEllipsoidBadPointsPercentage()
*/
double getEllipsoidBadPointsPercentage() const
{
return allowedBadPointsPercentage_;
}
double getEllipsoidShapePrecision() const;
void getFreemanChain(std::list<unsigned int> &freeman_chain) const;
inline double getGamma() const {return this->gamma;};
/*!
Return the color level of pixels inside the dot.
\sa getGrayLevelMax()
*/
inline unsigned int getGrayLevelMin() const {
return gray_level_min;
};
/*!
Return the color level of pixels inside the dot.
\sa getGrayLevelMin()
*/
inline unsigned int getGrayLevelMax() const {
return gray_level_max;
};
double getGrayLevelPrecision() const;
double getHeight() const;
double getMaxSizeSearchDistancePrecision() const;
/*!
\return The mean gray level value of the dot.
*/
double getMeanGrayLevel() const {
return (this->mean_gray_level);
};
double getSizePrecision() const;
double getWidth() const;
void initTracking(const vpImage<unsigned char>& I, unsigned int size = 0);
void initTracking(const vpImage<unsigned char>& I, const vpImagePoint &ip,
unsigned int size = 0);
void initTracking(const vpImage<unsigned char>& I, const vpImagePoint &ip,
unsigned int gray_lvl_min, unsigned int gray_lvl_max,
unsigned int size = 0 );
vpDot2& operator=(const vpDot2& twinDot );
friend VISP_EXPORT std::ostream& operator<< (std::ostream& os, vpDot2& d);
void print(std::ostream& os) { os << *this << std::endl ; }
void searchDotsInArea(const vpImage<unsigned char>& I,
int area_u, int area_v,
unsigned int area_w, unsigned int area_h, std::list<vpDot2> &niceDots );
void searchDotsInArea(const vpImage<unsigned char>& I, std::list<vpDot2> &niceDots );
void setArea( const double & area );
/*!
Initialize the dot coordinates with \e ip.
*/
inline void setCog(const vpImagePoint &ip) {
this->cog = ip;
}
/*!
Activates the dot's moments computation.
\param activate true, if you want to compute the moments. If false, moments
are not computed.
Computed moment are vpDot::m00, vpDot::m10, vpDot::m01, vpDot::m11,
vpDot::m20, vpDot::m02.
The coordinates of the region's centroid (u, v) can be computed from the
moments by \f$u=\frac{m10}{m00}\f$ and \f$v=\frac{m01}{m00}\f$.
*/
void setComputeMoments(const bool activate) { compute_moment = activate; }
/*!
Set the percentage of sampled points that are considered non conform
in terms of the gray level on the inner and the ouside ellipses.
Points located on the inner ellipse should have the same gray level
than the blob, while points located on the outside ellipse should
have a different gray level.
\param percentage : Percentage of points sampled with bad gray level
on the inner and outside ellipses that are admissible. 0 means
that all the points should have a right level, while a value of 1
means that all the points can have a bad gray level.
*/
void setEllipsoidBadPointsPercentage(const double &percentage=0.0)
{
if (percentage < 0.)
allowedBadPointsPercentage_ = 0.;
else if (percentage > 1.)
allowedBadPointsPercentage_ = 1.;
else
allowedBadPointsPercentage_ = percentage;
}
void setEllipsoidShapePrecision(const double & ellipsoidShapePrecision);
/*!
Activates the display of the border of the dot during the tracking.
The default thickness of the overlayed drawings can be modified using
setGraphicsThickness().
\warning To effectively display the dot graphics a call to
vpDisplay::flush() is needed.
\param activate If true, the border of the dot will be painted. false to
turn off border painting.
\sa setGraphicsThickness()
*/
void setGraphics(const bool activate) { graphics = activate ; }
/*!
Modify the default thickness that is set to 1 of the drawings in overlay when setGraphics() is enabled.
\sa setGraphics()
*/
void setGraphicsThickness(unsigned int t) {this->thickness = t;};
/*!
Set the color level of the dot to search a dot in a region of interest. This level will be
used to know if a pixel in the image belongs to the dot or not. Only pixels
with higher level can belong to the dot. If the level is lower than the
minimum level for a dot, set the level to MIN_IN_LEVEL.
\param min : Color level of a dot to search in a region of interest.
\sa setGrayLevelMax(), setGrayLevelPrecision()
*/
inline void setGrayLevelMin( const unsigned int & min ) {
if (min > 255)
this->gray_level_min = 255;
else
this->gray_level_min = min;
};
/*!
Set the color level of pixels surrounding the dot. This is meant to be used
to search a dot in a region of interest.
\param max : Intensity level of a dot to search in a region of interest.
\sa setGrayLevelMin(), setGrayLevelPrecision()
*/
inline void setGrayLevelMax( const unsigned int & max ) {
if (max > 255)
this->gray_level_max = 255;
else
this->gray_level_max = max;
};
void setGrayLevelPrecision( const double & grayLevelPrecision );
void setHeight( const double & height );
void setMaxSizeSearchDistancePrecision(const double & maxSizeSearchDistancePrecision);
void setSizePrecision( const double & sizePrecision );
void setWidth( const double & width );
void track(const vpImage<unsigned char> &I);
void track(const vpImage<unsigned char> &I, vpImagePoint &cog);
static void trackAndDisplay(vpDot2 dot[], const unsigned int &n, vpImage<unsigned char> &I,
std::vector<vpImagePoint> &cogs, vpImagePoint* cogStar = NULL);
#ifdef VISP_BUILD_DEPRECATED_FUNCTIONS
/*!
@name Deprecated functions
*/
vp_deprecated double getSurface() const;
vp_deprecated void setSurface( const double & surface );
#endif
public:
double m00; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{00} \f$ is a zero order moment obtained
with \f$i = j = 0 \f$. This moment corresponds to the dot
surface.
\sa setComputeMoments()
*/
double m10; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{10} \f$ is a first order moment
obtained with \f$i = 1 \f$ and \f$ j = 0 \f$. \f$ m_{10} \f$
corresponds to the inertia first order moment along the v axis.
\sa setComputeMoments()
*/
double m01; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{01} \f$ is a first order moment
obtained with \f$i = 0 \f$ and \f$ j = 1 \f$. \f$ m_{01} \f$
corresponds to the inertia first order moment along the u axis.
\sa setComputeMoments()
*/
double m11; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{11} \f$ is a first order moment
obtained with \f$i = 1 \f$ and \f$ j = 1 \f$.
\sa setComputeMoments()
*/
double m20; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{20} \f$ is a second order moment
obtained with \f$i = 2 \f$ and \f$ j = 0 \f$. \f$ m_{20} \f$
corresponds to the inertia second order moment along the v
axis.
\sa setComputeMoments()
*/
double m02; /*!< Considering the general distribution moments for \f$ N \f$
points defined by the relation \f$ m_{ij} = \sum_{h=0}^{N}
u_h^i v_h^j \f$, \f$ m_{02} \f$ is a second order moment
obtained with \f$i = 0 \f$ and \f$ j = 2 \f$. \f$ m_{02} \f$
corresponds to the inertia second order moment along the u
axis.
\sa setComputeMoments()
*/
double mu11;/*!< \f$ \mu_{11} \f$ is a second order central moments defined by:
\f$ \mu_{11} = m_{11} - \frac{m_{10}}{m_{00}}m_{01} \f$
\sa setComputeMoments()
*/
double mu20;/*!< \f$ \mu_{20} \f$ is a second order central moments defined by:
\f$ \mu_{20} = m_{20} - \frac{m_{10}}{m_{00}}m_{10} \f$
\sa setComputeMoments()
*/
double mu02;/*!< \f$ \mu_{02} \f$ is a second order central moments defined by:
\f$ \mu_{02} = m_{02} - \frac{m_{01}}{m_{00}}m_{01} \f$
\sa setComputeMoments()
*/
private:
virtual bool isValid(const vpImage<unsigned char>& I, const vpDot2& wantedDot);
virtual bool hasGoodLevel(const vpImage<unsigned char>& I,
const unsigned int &u,
const unsigned int &v) const;
virtual bool hasReverseLevel(const vpImage<unsigned char>& I,
const unsigned int &u,
const unsigned int &v) const;
virtual vpDot2* getInstance();
void init();
bool computeParameters(const vpImage<unsigned char> &I,
const double &u = -1.0,
const double &v = -1.0);
bool findFirstBorder(const vpImage<unsigned char> &I, const unsigned int &u,
const unsigned int &v, unsigned int &border_u,
unsigned int &border_v);
void computeMeanGrayLevel(const vpImage<unsigned char>& I);
/*!
Get the starting point on a dot border. The dot border is
computed from this point.
\sa getFirstBorder_v()
*/
unsigned int getFirstBorder_u() const {
return this->firstBorder_u;
}
/*!
Get the starting point on a dot border. The dot border is
computed from this point.
\sa getFirstBorder_u()
*/
unsigned int getFirstBorder_v() const {
return this->firstBorder_v;
}
bool computeFreemanChainElement(const vpImage<unsigned char> &I,
const unsigned int &u,
const unsigned int &v,
unsigned int &element);
void computeFreemanParameters(const int &u_p,
const int &v_p, unsigned int &element,
int &du, int &dv, float &dS,
float &dMu, float &dMv,
float &dMuv,
float &dMu2, float &dMv2);
void updateFreemanPosition( unsigned int& u, unsigned int& v,
const unsigned int &dir );
bool isInImage(const vpImage<unsigned char> &I ) const;
bool isInImage(const vpImage<unsigned char> &I, const vpImagePoint &ip) const;
bool isInArea(const unsigned int &u, const unsigned int &v) const;
void getGridSize( unsigned int &gridWidth, unsigned int &gridHeight );
void setArea(const vpImage<unsigned char> &I,
int u, int v, unsigned int w, unsigned int h);
void setArea(const vpImage<unsigned char> &I);
void setArea(const vpRect & a);
unsigned char getMeanGrayLevel(vpImage<unsigned char>& I) const;
//! coordinates (float) of the point center of gravity
vpImagePoint cog;
double width;
double height;
double surface;
unsigned int gray_level_min; // minumum gray level for the dot.
// pixel with lower level don't belong
// to this dot.
unsigned int gray_level_max; // maximum gray level for the dot.
// pixel with higher level don't belong
// to this dot.
double mean_gray_level; // Mean gray level of the dot
double grayLevelPrecision ;
double gamma ;
double sizePrecision ;
double ellipsoidShapePrecision;
double maxSizeSearchDistancePrecision;
double allowedBadPointsPercentage_;
// Area where the dot is to search
vpRect area;
// other
std::list<unsigned int> direction_list;
std::list<vpImagePoint> ip_edges_list;
// flag
bool compute_moment ; // true moment are computed
bool graphics ; // true for graphic overlay display
unsigned int thickness; // Graphics thickness
// Bounding box
int bbox_u_min, bbox_u_max, bbox_v_min, bbox_v_max;
// The first point coodinate on the dot border
unsigned int firstBorder_u;
unsigned int firstBorder_v;
//Static funtions
public:
static void display(const vpImage<unsigned char>& I,const vpImagePoint &cog,
const std::list<vpImagePoint> &edges_list, vpColor color = vpColor::red,
unsigned int thickness=1);
static void display(const vpImage<vpRGBa>& I,const vpImagePoint &cog,
const std::list<vpImagePoint> &edges_list, vpColor color = vpColor::red,
unsigned int thickness=1);
};
#endif
|