/usr/include/visp/vpFeatureTranslation.h is in libvisp-dev 2.9.0-3+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | /****************************************************************************
*
* $Id: vpFeatureTranslation.h 4574 2014-01-09 08:48:51Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* 3D translation visual feature.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#ifndef vpFeatureTranslation_H
#define vpFeatureTranslation_H
/*!
\file vpFeatureTranslation.h
\brief class that defines the translation visual feature.
*/
#include <visp/vpMatrix.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpTranslationVector.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpRGBa.h>
/*!
\class vpFeatureTranslation
\ingroup VsFeature3
\brief Class that defines the translation visual feature
\f$s=(t_x,t_y,t_z)\f$.
It is convenient to consider two coordinate frames noted here \f$ {\cal{F}}_1 \f$ and \f$
{\cal{F}}_{2} \f$.
Let \f$^{{\cal{F}}_2}M_{{\cal{F}}_1} \f$ be the homogeneous matrix that gives the
orientation and the translation of the frame \f$ {\cal{F}}_1 \f$ with respect to the frame \f$ {\cal{F}}_2 \f$.
\f[
^{{\cal{F}}_2}M_{{\cal{F}}_1} = \left(\begin{array}{cc}
^{{\cal{F}}_2}R_{{\cal{F}}_1} & ^{{\cal{F}}_2}t_{{\cal{F}}_1} \\
{\bf 0}_{1\times 3} & 1
\end{array}
\right)
\f]
with \f$^{{\cal{F}}_2}R_{{\cal{F}}_1} \f$ the rotation matrix that gives the orientation
of the frame \f$ {\cal{F}}_1 \f$ relative to the frame \f$ {\cal{F}}_2 \f$ and
\f$^{{\cal{F}}_2}t_{{\cal{F}}_1} \f$ the translation vector that gives the position of
the frame \f$ {\cal{F}}_1 \f$ relative to the frame \f$ {\cal{F}}_2 \f$. To
know more about homogeneous matrices see vpHomogeneousMatrix
documentation.
This class can be used to manipulate three kind of visual features:
- This class can be used to manipulate the translation visual feature
\f$s= ^{c^*}t_c\f$ which gives the position of
the current camera frame relative to the desired camera frame. It is composed by the three components \f$(t_x,t_y,t_z)\f$. The desired
visual feature \f$ s^* \f$ is equal to zero. The corresponding error
is than equal to \f$ e=(s-s^*) = ^{c^*}t_c \f$. In this case, the
interaction matrix related to \f$ s \f$ is given by \f[ L = [
^{c^*}R_c \;\; 0_3] \f]
- This class can also be used to manipulate the translation visual feature
\f$s= ^{c}t_{c^*}\f$ which gives the position of
the desired camera frame relative to the current camera frame. It is composed by the three components \f$(t_x,t_y,t_z)\f$. The desired
visual feature \f$ s^* \f$ is equal to zero. The corresponding error
is than equal to \f$ e=(s-s^*) = ^{c}t_{c^*} \f$. In this case, the
interaction matrix related to \f$ s \f$ is given by \f[ L = [
-I_3 \;\; [^{c}t_{c^*}]_\times] \f]
- Actually, this class can also be used to manipulate the
translation visual feature \f$s= ^{c}t_o\f$ which gives the position
of the object frame relative to the current camera frame. It is
composed by the three components \f$(t_x,t_y,t_z)\f$ too. The
desired visual feature \f$ s^* \f$ is the translation visual feature
\f$s^*= ^{c^*}t_o\f$ which gives the position of the object frame
relative to the desired camera frame. The corresponding error is
than equal to \f$ e=(s-s^*) = ^{c}t_o - ^{c^*}t_o \f$. In this case,
the interaction matrix related to \f$ s \f$ is given by \f[ L = [
-I_3 \;\; [^{c}t_o]_\times] \f]
To initialize the feature \f$(t_x, t_y, t_z)\f$ you may use member
fonctions like set_Tx(), set_Ty(), set_Tz(), or also buildFrom()
fonctions.
The interaction() method allows to compute the interaction matrix
\f$ L\f$ associated to the translation visual feature, while the
error() method computes the error vector \f$(s - s^*)\f$ between the
current visual feature and the desired one.
The code below shows how to create a eye-in hand visual servoing
task using a 3D translation feature \f$(t_x,t_y,t_z)\f$ that
correspond to the 3D translation between the desired camera frame
and the current camera frame. To control six degrees of freedom, at
least three other features must be considered like vpFeatureThetaU
visual features. First we create a current (\f$s\f$) and desired
(\f$s^*\f$) 3D translation feature, set the task to use the
interaction matrix associated to the current feature \f$L_s\f$ and
than compute the camera velocity \f$v=-\lambda \; L_s^+ \;
(s-s^*)\f$. The current feature \f$s\f$ is updated in the while() loop
while \f$s^*\f$ is set to zero.
\code
#include <visp/vpFeatureTranslation.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpServo.h>
int main()
{
vpServo task; // Visual servoing task
vpHomogeneousMatrix cdMc;
// ... cdMc need here to be initialized from for example a pose estimation.
// Creation of the current visual feature s
vpFeatureTranslation s(vpFeatureTranslation::cdMc);
s.buildFrom(cdMc); // Initialization of the current feature s=(tx,ty,tz)
// Set eye-in-hand control law.
// The computed velocities will be expressed in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// Interaction matrix is computed with the current visual features s
task.setInteractionMatrixType(vpServo::CURRENT);
// Set the constant gain
double lambda = 0.8;
task.setLambda(lambda);
// Add the 3D translation feature to the task
task.addFeature(s); // s* is here considered as zero
// Control loop
for ( ; ; ) {
// ... cdMc need here to be initialized from for example a pose estimation.
// Update the current 3D translation visual feature
s.buildFrom(cdMc);
// compute the control law
vpColVector v = task.computeControlLaw(); // camera velocity
}
}
\endcode
If you want to deal only with the \f$(t_x,t_y)\f$ subset feature from the 3D
translation, you have just to modify the addFeature() call in
the previous example by the following line. In that case, the dimension
of \f$s\f$ is two.
\code
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(s, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
If you want to build your own control law, this other example shows
how to create a current (\f$s\f$) and desired (\f$s^*\f$) 3D
translation visual feature, compute the corresponding error
vector \f$(s-s^*)\f$ and finally build the interaction matrix \f$L_s\f$.
\code
#include <visp/vpFeatureTranslation.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
int main()
{
vpHomogeneousMatrix cdMc;
// ... cdMc need here to be initialized from for example a pose estimation.
// Creation of the current feature s
vpFeatureTranslation s(vpFeatureTranslation::cdMc);
s.buildFrom(cdMc); // Initialization of the feature
// Creation of the desired feature s*. By default this feature is
// initialized to zero
vpFeatureTranslation s_star(vpFeatureTranslation::cdMc);
// Compute the interaction matrix for the translation feature
vpMatrix L = s.interaction();
// Compute the error vector (s-s*) for the translation feature
vpColVector e = s.error(s_star); // e = (s-s*)
}
\endcode
The code below shows how to create an eye-in hand visual servoing
task using a 3D translation feature \f$(t_x,t_y,t_z)\f$ that
correspond to the 3D translation between the current camera frame
and the object frame. Like with the previous examples, to
control six degrees of freedom, at least three other features must be
considered like vpFeatureThetaU visual features. The way to initialize
the visual features is quite the same as before. The difference is that
the cMo method must be precised and the desired feature is note
necessary equal to zero.
\code
#include <visp/vpFeatureTranslation.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpServo.h>
int main()
{
vpServo task; // Visual servoing task
vpHomogeneousMatrix cdMo;
// ... cdMo need here to be initialized from for example a pose estimation.
// Creation of the desired visual feature s*
vpFeatureTranslation s_star(vpFeatureTranslation::cMo);
s_star.buildFrom(cdMo); // Initialization of the desired feature s*=(tx*,ty*,tz*)
vpHomogeneousMatrix cMo;
// ... cMo need here to be computed.
// Creation of the current visual feature s
vpFeatureTranslation s(vpFeatureTranslation::cMo);
s.buildFrom(cMo); // Initialization of the current feature s=(tx,ty,tz)
// Set eye-in-hand control law.
// The computed velocities will be expressed in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// Interaction matrix is computed with the current visual features s
task.setInteractionMatrixType(vpServo::CURRENT);
// Set the constant gain
double lambda = 0.8;
task.setLambda(lambda);
// Add the 3D translation feature to the task
task.addFeature(s, s_star); // s* is here considered as zero
// Control loop
for ( ; ; ) {
// ... cMo need here to be computed from for example a pose estimation.
// Update the current 3D translation visual feature
s.buildFrom(cMo);
// compute the control law
vpColVector v = task.computeControlLaw(); // camera velocity
}
}
\endcode
*/
class VISP_EXPORT vpFeatureTranslation : public vpBasicFeature
{
public:
/*!
\enum vpFeatureTranslationRepresentationType
Kind of implemented 3D translation feature.
*/
typedef enum {
/*! Selector used to manipulate the visual feature \f$s=
^{c^*}t_c\f$ which gives the position of the current camera frame
relative to the desired camera frame.*/
cdMc,
/*! Selector used to manipulate the visual feature \f$s=
^{c}t_{c^*}\f$ which gives the position of the desired camera frame
relative to the current camera frame.*/
cMcd,
/*! Selector used to manipulate the visual feature \f$s=
^{c}t_o\f$ which gives the position of the object frame relative to
the current camera frame. */
cMo
} vpFeatureTranslationRepresentationType;
// basic construction
void init() ;
// basic constructor
vpFeatureTranslation(vpFeatureTranslationRepresentationType r) ;
// constructor : build from an homogeneous matrix
// cdMc is the displacement that the camera has to realize
vpFeatureTranslation(vpHomogeneousMatrix &f2Mf1, vpFeatureTranslationRepresentationType r) ;
//! Destructor. Does nothing.
virtual ~vpFeatureTranslation() { if (flags != NULL) delete [] flags; }
// build from an homogeneous matrix
// cdMc is the displacement that the camera has to realize
void buildFrom(const vpHomogeneousMatrix &f2Mf1) ;
void set_Tx(const double t_x) ;
void set_Ty(const double t_y) ;
void set_Tz(const double t_z) ;
double get_Tx() const ;
double get_Ty() const ;
double get_Tz() const ;
// feature selection
/*!
Function used to select the \f$ t_x\f$ subset of the translation
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ t_x\f$.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
- With the feature type cdMc:
\code
vpFeatureTranslation t(vpFeatureTranslation::cdMc);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
- With the feature type cMcd:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMcd);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
- With the feature type cMo:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMo);
vpFeatureTranslation t_star(vpFeatureTranslation::cMo);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, t_star, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
\sa selectTy(), selectTz()
*/
inline static unsigned int selectTx() { return FEATURE_LINE[0] ; }
/*!
Function used to select the \f$ t_y\f$ subset of the translation
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ t_y\f$.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
- With the feature type cdMc:
\code
vpFeatureTranslation t(vpFeatureTranslation::cdMc);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
- With the feature type cMcd:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMcd);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
- With the feature type cMo:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMo);
vpFeatureTranslation t_star(vpFeatureTranslation::cMo);
vpServo task;
...
// Add the (tx,ty) subset features from 3D translation to the task
task.addFeature(t, t_star, vpFeatureTranslation::selectTx() | vpFeatureTranslation::selectTy());
\endcode
\sa selectTx(), selectTz()
*/
inline static unsigned int selectTy() { return FEATURE_LINE[1] ; }
/*!
Function used to select the \f$ t_z\f$ subset of the translation
visual feature.
This function is to use in conjunction with interaction() in order
to compute the interaction matrix associated to \f$ t_z\f$.
See the interaction() method for an usage example.
This function is also useful in the vpServo class to indicate that
a subset of the visual feature is to use in the control law:
- With the feature type cdMc:
\code
vpFeatureTranslation t(vpFeatureTranslation::cdMc);
vpServo task;
...
// Add the (tz) subset feature from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTz());
\endcode
- With the feature type cMcd:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMcd);
vpServo task;
...
// Add the (tz) subset feature from 3D translation to the task
task.addFeature(t, vpFeatureTranslation::selectTz());
\endcode
- With the feature type cMo:
\code
vpFeatureTranslation t(vpFeatureTranslation::cMo);
vpFeatureTranslation t_star(vpFeatureTranslation::cMo);
vpServo task;
...
// Add the (tz) subset feature from 3D translation to the task
task.addFeature(t, t_star, vpFeatureTranslation::selectTz());
\endcode
\sa selectTx(), selectTy()
*/
inline static unsigned int selectTz() { return FEATURE_LINE[2] ; }
// compute the interaction matrix from a subset a the possible features
vpMatrix interaction(const unsigned int select = FEATURE_ALL);
// compute the error between two visual features from a subset
// a the possible features
vpColVector error(const vpBasicFeature &s_star,
const unsigned int select = FEATURE_ALL) ;
// print the name of the feature
void print(const unsigned int select= FEATURE_ALL) const ;
//! Feature duplication
vpFeatureTranslation *duplicate() const ;
void display(const vpCameraParameters &cam,
const vpImage<unsigned char> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
void display(const vpCameraParameters &cam,
const vpImage<vpRGBa> &I,
const vpColor &color=vpColor::green,
unsigned int thickness=1) const ;
private:
//! displacement that the camera has to realize
vpHomogeneousMatrix f2Mf1;
vpFeatureTranslationRepresentationType translation;
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|