This file is indexed.

/usr/include/visp/vpMatrix.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/****************************************************************************
 *
 * $Id: vpMatrix.h 4574 2014-01-09 08:48:51Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Matrix manipulation.
 *
 * Authors:
 * Eric Marchand
 *
 *****************************************************************************/



#ifndef vpMatrix_H
#define vpMatrix_H

#include <visp/vpConfig.h>
#include <visp/vpException.h>
#include <visp/vpTime.h>

#ifdef VISP_HAVE_GSL
#  include <gsl/gsl_math.h>
#  include <gsl/gsl_eigen.h>
#endif

#include <iostream>
#include <math.h>

class vpRowVector;
class vpColVector;
class vpTranslationVector;


class vpColVector;
class vpTranslationVector;
class vpRowVector;
class vpHomography;



/*!
  \file vpMatrix.h

  \brief Definition of matrix class as well as a set of operations on
  these matrices.
*/



/*!
  \class vpMatrix
  \ingroup Matrix

  \brief Definition of the vpMatrix class.

  vpMatrix class provides a data structure for the matrices as well
  as a set of operations on these matrices

  \author Eric Marchand (IRISA - INRIA Rennes)

  \warning Note the matrix in the class (*this) will be noted A in the comment

  \ingroup libmath

  \sa vpRowVector, vpColVector, vpHomogeneousMatrix, vpRotationMatrix,
  vpTwistMatrix, vpHomography
*/
class VISP_EXPORT vpMatrix
{
 public:
  /*!
    Method used to compute the determinant of a square matrix.
    \sa det()
  */
  typedef enum {
    LU_DECOMPOSITION     /*!< LU decomposition method. */
  } vpDetMethod;


protected:
  //! number of rows
  unsigned int rowNum;
  //! number of columns
  unsigned int colNum;

 public:
  //! address of the first element of the data array
  double *data;
 protected:
  //! address of the first element of each rows
  double **rowPtrs;

  //! Current size (rowNum * colNum)
  unsigned int dsize;
  //! Total row space
  unsigned int trsize;

 public:
  //! Basic constructor
  vpMatrix() ;
  //! Constructor. Initialization of A as an r x c matrix with 0.
  vpMatrix(unsigned int r, unsigned int c) ;

  //! sub vpMatrix constructor
  vpMatrix(const vpMatrix &m, unsigned int r, unsigned int c, 
	   unsigned int nrows, unsigned int ncols) ;

  vpMatrix(const vpHomography& H);

  //! Destructor (Memory de-allocation)
  virtual ~vpMatrix();

  //! Initialization of the object matrix
  void  init() ;

  //! Destruction of the matrix  (Memory de-allocation)
  void kill() ;

  // Initialize an identity matrix n-by-n
  void eye(unsigned int n) ;
  // Initialize an identity matrix m-by-n
  void eye(unsigned int m, unsigned int n) ;
  void setIdentity(const double & val=1.0) ;

  //---------------------------------
  // Set/get Matrix size
  //---------------------------------
  /** @name Set/get Matrix size  */
  //@{
  //! Return the number of rows of the matrix
  inline unsigned int getRows() const { return rowNum ;}
  //! Return the number of columns of the matrix
  inline unsigned int getCols() const { return colNum; }

  // Set the size of the matrix A, initialization with a zero matrix
  void resize(const unsigned int nrows, const unsigned int ncols, 
	      const bool nullify = true);
  
  double getMinValue() const;
  
  double getMaxValue() const;
  //@}

  //---------------------------------
  // Printing
  //---------------------------------

  friend VISP_EXPORT std::ostream &operator << (std::ostream &s,const vpMatrix &m);
  /** @name Printing  */
  //@{

  int print(std::ostream& s, unsigned int length, char const* intro=0);
  std::ostream & matlabPrint(std::ostream & os) const;
  std::ostream & maplePrint(std::ostream & os) const;
  std::ostream & csvPrint(std::ostream & os) const;
  std::ostream & cppPrint(std::ostream & os, const char * matrixName = NULL, bool octet = false) const;

  void printSize() { std::cout << getRows() <<" x " << getCols() <<"  " ; }
  //@}
  

  //---------------------------------
  // Copy / assignment
  //---------------------------------
  /** @name Copy / assignment  */
  //@{
  //! Copy constructor
  vpMatrix (const vpMatrix& m);

  // Assignment from an array
  vpMatrix &operator<<(double*);

  //! Copy operator.   Allow operation such as A = B
  vpMatrix &operator=(const vpMatrix &B);
  //! Copy operator.   Allow operation such as A = H
  vpMatrix &operator=(const vpHomography &H);
  //! Set all the element of the matrix A to x
  vpMatrix &operator=(const double x);
  void diag(const vpColVector &A);
  //@}

  //---------------------------------
  // Access/modification operators
  //---------------------------------
  /** @name Access/modification operators  */
  //@{
  //! write elements Aij (usage : A[i][j] = x )
  inline double *operator[](unsigned int i) { return rowPtrs[i]; }
  //! read elements Aij  (usage : x = A[i][j] )
  inline double *operator[](unsigned int i) const {return rowPtrs[i];}
  //@}

  //---------------------------------
  // Matrix operations (Static).
  //---------------------------------  

  static void add2Matrices(const vpMatrix &A, const vpMatrix &B, vpMatrix &C);
  static void add2WeightedMatrices(const vpMatrix &A, const double &wA, const vpMatrix &B,const double &wB, vpMatrix &C);
  static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector &x, const vpColVector &b);
  static vpMatrix computeCovarianceMatrix(const vpMatrix &A, const vpColVector &x, const vpColVector &b, const vpMatrix &w);
  static void computeHLM(const vpMatrix &H, const double &alpha, vpMatrix &HLM);

  // Create a diagonal matrix with the element of a vector DAii = Ai
  static void createDiagonalMatrix(const vpColVector &A, vpMatrix &DA)  ;
  // Insert matrix A in the current matrix at the given position (r, c).
  void insert(const vpMatrix&A, const unsigned int r, const unsigned int c);
  // Insert matrix B in matrix A at the given position (r, c).
  static vpMatrix insert(const vpMatrix &A,const  vpMatrix &B, const unsigned int r, const unsigned int c) ;
  // Insert matrix B in matrix A (not modified) at the given position (r, c), the result is given in matrix C.
  static void insert(const vpMatrix &A, const vpMatrix &B, vpMatrix &C, const unsigned int r, const unsigned int c) ;

  // Juxtapose to matrices C = [ A B ]
  static vpMatrix juxtaposeMatrices(const vpMatrix &A,const  vpMatrix &B) ;
  // Juxtapose to matrices C = [ A B ]
  static void juxtaposeMatrices(const vpMatrix &A,const  vpMatrix &B, vpMatrix &C) ;
  // Compute Kronecker product matrix
  static void kron(const vpMatrix  &m1, const vpMatrix  &m2 , vpMatrix  &out);

  // Compute Kronecker product matrix
  static vpMatrix kron(const vpMatrix  &m1, const vpMatrix  &m2 );

  /*!
    Load a matrix from a file.

    \param filename : absolute file name
    \param M : matrix to be loaded
    \param binary :If true the matrix is loaded from a binary file, else from a text file.
    \param Header : Header of the file is loaded in this parameter

    \return Returns true if no problem appends.
  */
  static inline bool loadMatrix(std::string filename, vpMatrix &M,
                                const bool binary = false, char *Header = NULL)
  {
    return vpMatrix::loadMatrix(filename.c_str(), M, binary, Header);
  }
  static bool loadMatrix(const char *filename, vpMatrix &M, const bool binary = false, char *Header = NULL);
  static void mult2Matrices(const vpMatrix &A, const vpMatrix &B, vpMatrix &C);
  static void multMatrixVector(const vpMatrix &A, const vpColVector &b, vpColVector &c);
  static void negateMatrix(const vpMatrix &A, vpMatrix &C);
  /*!
    Save a matrix to a file.

    \param filename : absolute file name
    \param M : matrix to be saved
    \param binary :If true the matrix is save in a binary file, else a text file.
    \param Header : optional line that will be saved at the beginning of the file

    \return Returns true if no problem appends.

    Warning : If you save the matrix as in a text file the precision is less than if you save it in a binary file.
  */
  static inline bool saveMatrix(std::string filename, const vpMatrix &M,
        const bool binary = false,
        const char *Header = "")
  {
    return vpMatrix::saveMatrix(filename.c_str(), M, binary, Header);
  }
  static bool saveMatrix(const char *filename, const vpMatrix &M, const bool binary = false, const char *Header = "");

  /*!
    Save a matrix in a YAML-formatted file.

    \param filename : absolute file name.
    \param M : matrix to be saved in the file.
    \param header : optional lines that will be saved at the beginning of the file. Should be YAML-formatted and will adapt to the indentation if any.

    \return Returns true if success.

  */
  static inline bool saveMatrixYAML(std::string filename, const vpMatrix &M, const char *header = "")
  {
    return vpMatrix::saveMatrixYAML(filename.c_str(), M, header);
  }
  static bool saveMatrixYAML(const char *filename, const vpMatrix &M, const char *header = "");
  /*!
    Load a matrix from a YAML-formatted file.

    \param filename : absolute file name.
    \param M : matrix to be loaded from the file.
    \param header : Header of the file is loaded in this parameter.

    \return Returns true if no problem appends.
  */
  static inline bool loadMatrixYAML(std::string filename, vpMatrix &M, char *header = NULL)
  {
    return vpMatrix::loadMatrixYAML(filename.c_str(), M, header);
  }
  static bool loadMatrixYAML(const char *filename, vpMatrix &M, char *header = NULL);


  // Stack the matrix A below the current one, copy if not initialized this = [ this A ]^T
  void stackMatrices(const vpMatrix &A);
  //! Stack two Matrices C = [ A B ]^T
  static vpMatrix stackMatrices(const vpMatrix &A,const  vpMatrix &B) ;
  //! Stack two Matrices C = [ A B ]^T
  static void stackMatrices(const vpMatrix &A,const  vpMatrix &B, vpMatrix &C) ;
  static void sub2Matrices(const vpMatrix &A, const vpMatrix &B, vpMatrix &C);
  

  //---------------------------------
  // Matrix operations.
  //---------------------------------
  /** @name Matrix operations  */
  //@{
  // operation A = A + B
  vpMatrix &operator+=(const vpMatrix &B);
  // operation A = A - B
  vpMatrix &operator-=(const vpMatrix &B);

  vpMatrix operator*(const vpMatrix &B) const;
  vpMatrix operator*(const vpHomography &H) const;
  vpMatrix operator+(const vpMatrix &B) const;
  vpMatrix operator-(const vpMatrix &B) const;
  vpMatrix operator-() const;

  //---------------------------------
  // Matrix/vector operations.
  //---------------------------------

  vpColVector operator*(const vpColVector &b) const;
  // operation c = A * b (A is unchanged, c and b are translation vectors)
  vpTranslationVector operator*(const vpTranslationVector  &b) const;
  //---------------------------------
  // Matrix/real operations.
  //---------------------------------

  //! Add x to all the element of the matrix : Aij = Aij + x
  vpMatrix &operator+=(const double x);
  //! Substract x to all the element of the matrix : Aij = Aij - x
  vpMatrix &operator-=(const double x);
  //! Multiply  all the element of the matrix by x : Aij = Aij * x
  vpMatrix &operator*=(const double x);
  //! Divide  all the element of the matrix by x : Aij = Aij / x
  vpMatrix &operator/=(double x);

  // Cij = Aij * x (A is unchanged)
  vpMatrix operator*(const double x) const;
  // Cij = Aij / x (A is unchanged)
  vpMatrix operator/(const double x) const;

  //!return sum of the Aij^2 (for all i, for all j)
  double sumSquare() const;

  // return the determinant of the matrix.
  double det(vpDetMethod method = LU_DECOMPOSITION) const;
  
  //Compute the exponential matrix of a square matrix
  vpMatrix expm();

  //-------------------------------------------------
  // Columns, Rows extraction, SubMatrix
  //-------------------------------------------------
  /** @name Columns, Rows extraction, Submatrix  */
  //@{
  //! Row extraction
  vpRowVector row(const unsigned int i);
  //! Column extraction
  vpColVector column(const unsigned int j);
  //! subvpMatrix extraction
  void init(const vpMatrix &m, unsigned int r, unsigned int c, 
	    unsigned int nrows, unsigned int ncols);
  //@}

  //-------------------------------------------------
  // transpose
  //-------------------------------------------------
  /** @name Transpose, Identity  */
  //@{
  // Compute the transpose C = A^T
  vpMatrix t() const;

  // Compute the transpose C = A^T
  vpMatrix transpose()const;
  void  transpose(vpMatrix & C )const;
    
  vpMatrix AAt() const;
  void AAt(vpMatrix &B) const;
   
  vpMatrix AtA() const;
  void AtA(vpMatrix &B) const;
  //@}


  //-------------------------------------------------
  // Kronecker product
  //-------------------------------------------------
  /** @name Kronecker product  */
  //@{
  
  // Stacks columns of a matrix in a vector
  void stackColumns(vpColVector  &out );

  // Stacks columns of a matrix in a vector
  vpColVector stackColumns();

  // Stacks columns of a matrix in a vector
  void stackRows(vpRowVector  &out );

  // Stacks columns of a matrix in a vector
  vpRowVector stackRows();
  
  // Compute Kronecker product matrix 
  void kron(const vpMatrix  &m1 , vpMatrix  &out);
  
  // Compute Kronecker product matrix 
  vpMatrix kron(const vpMatrix  &m1);
  //@}
  
  //-------------------------------------------------
  // Matrix inversion
  //-------------------------------------------------
  /** @name Matrix inversion  */
  //@{
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  //! LU Decomposition
  void LUDcmp(unsigned int* perm, int& d);
  //! solve AX = B using the LU Decomposition
  void LUBksb(unsigned int* perm, vpColVector& b);

#endif // doxygen should skip this
  // inverse matrix A using the LU decomposition 
  vpMatrix inverseByLU() const;
#if defined(VISP_HAVE_LAPACK)
  // inverse matrix A using the Cholesky decomposition (only for real symmetric matrices)
  vpMatrix inverseByCholesky() const;
  //lapack implementation of inverse by Cholesky
  vpMatrix inverseByCholeskyLapack() const;
  // inverse matrix A using the QR decomposition
  vpMatrix inverseByQR() const;
  //lapack implementation of inverse by QR
  vpMatrix inverseByQRLapack() const;
#endif
  //! Compute the pseudo inverse of the matrix using the SVD.
  vpMatrix pseudoInverse(double svThreshold=1e-6)  const;
  //! Compute the pseudo inverse of the matrix using the SVD.
  //! return the rank
  unsigned int pseudoInverse(vpMatrix &Ap, double svThreshold=1e-6)  const;
  //! Compute the pseudo inverse of the matrix using the SVD.
  //! return the rank and the singular value
  unsigned int pseudoInverse(vpMatrix &Ap, vpColVector &sv, double svThreshold=1e-6) const ;
  //! Compute the pseudo inverse of the matrix using the SVD.
  //! return the rank and the singular value, image
  unsigned int pseudoInverse(vpMatrix &Ap,
                             vpColVector &sv, double svThreshold,
                             vpMatrix &ImA,
                             vpMatrix &ImAt) const ;
  //! Compute the pseudo inverse of the matrix using the SVD.
  //! return the rank and the singular value, image, kernel.
  unsigned int pseudoInverse(vpMatrix &Ap,
                             vpColVector &sv, double svThreshold,
                             vpMatrix &ImA,
                             vpMatrix &ImAt,
                             vpMatrix &kerA) const ;
  //@}

  //-------------------------------------------------
  // SVD decomposition
  //-------------------------------------------------

#ifndef DOXYGEN_SHOULD_SKIP_THIS
  void svdFlake(vpColVector& w, vpMatrix& v);
  void svdNr(vpColVector& w, vpMatrix& v);
#ifdef VISP_HAVE_GSL
  void svdGsl(vpColVector& w, vpMatrix& v);
#endif
#if (VISP_HAVE_OPENCV_VERSION >= 0x020101) // Require opencv >= 2.1.1
  void svdOpenCV(vpColVector& w, vpMatrix& v);
#endif
#ifdef VISP_HAVE_LAPACK
  void svdLapack(vpColVector& W, vpMatrix& V);
#endif
  //! solve AX=B using the SVD decomposition
  void SVBksb(const vpColVector& w,
  	      const vpMatrix& v,
  	      const vpColVector& b, vpColVector& x);
#endif

  /** @name SVD decomposition  */
  //@{
  // singular value decomposition SVD

  void svd(vpColVector& w, vpMatrix& v);

  // solve Ax=B using the SVD decomposition (usage A = solveBySVD(B,x) )
  void solveBySVD(const vpColVector &B, vpColVector &x) const ;
  // solve Ax=B using the SVD decomposition (usage  x=A.solveBySVD(B))
  vpColVector solveBySVD(const vpColVector &B) const ;

  unsigned int kernel(vpMatrix &KerA, double svThreshold=1e-6);
  double cond();
  //@}

  //-------------------------------------------------
  // Eigen values and vectors
  //-------------------------------------------------

  /** @name Eigen values  */

  //@{
  // compute the eigen values using the Gnu Scientific library
  vpColVector eigenValues();
  void eigenValues(vpColVector &evalue, vpMatrix &evector);
  //@}

  // -------------------------
  // Norms
  // -------------------------
  /** @name Norms  */
  //@{
  // Euclidean norm ||x||=sqrt(sum(x_i^2))
  double euclideanNorm () const;
  // Infinity norm ||x||=max(sum(fabs(x_i)))
  double infinityNorm () const;
  //@}

 private:
  double detByLU() const;

};


//////////////////////////////////////////////////////////////////////////


//////////////////////////////////////////////////////////////////////////


//! multiplication by a scalar C = x*A
VISP_EXPORT vpMatrix operator*(const double &x, const vpMatrix &A) ;

  //! multiplication by a scalar C = x*A
VISP_EXPORT vpColVector operator*(const double &x, const vpColVector &A) ;



#endif


/*
 * Local variables:
 * c-basic-offset: 2
 * End:
 */