This file is indexed.

/usr/include/visp/vpRobotWireFrameSimulator.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/****************************************************************************
 *
 * $Id: vpRobotWireFrameSimulator.h 3530 2012-01-03 10:52:12Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Basic class used to make robot simulators.
 *
 * Authors:
 * Nicolas Melchior
 *
 *****************************************************************************/

#ifndef vpRobotWireFrameSimulator_HH
#define vpRobotWireFrameSimulator_HH

/*!
  \file vpRobotWireFrameSimulator.h
  \brief Basic class used to make robot simulators.
*/

#include <visp/vpConfig.h>



#if defined(_WIN32) || defined(VISP_HAVE_PTHREAD)
#include <cmath>    // std::fabs
#include <limits>   // numeric_limits
#if defined(_WIN32)
#  include <windows.h>
#elif defined(VISP_HAVE_PTHREAD)
#  include <pthread.h>
#endif

#include <visp/vpWireFrameSimulator.h>
#include <visp/vpRobot.h>
#include <visp/vpRobotSimulator.h>
#include <visp/vpDisplayOpenCV.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpDisplayGDI.h>
#include <visp/vpDisplayD3D.h>

/*!
  \class vpRobotWireFrameSimulator

  \ingroup RobotSimuWithVisu

  \brief This class aims to be a basis used to create all the
  simulators of robots.
  
  Thus in this class you will find all the parameters and methods
  which are necessary to create a simulator. Several methods are pure
  virtual. In this case it means that they are specific to the each
  robot, for example the computation of the geometrical model.

  \warning This class uses threading capabilities. Thus on Unix-like
  platforms, the libpthread third-party library need to be
  installed. On Windows, we use the native threading capabilities.
*/
class VISP_EXPORT vpRobotWireFrameSimulator : protected vpWireFrameSimulator, public vpRobotSimulator
{
  public:
    vpImage<vpRGBa> I;
    
    typedef enum  
    {
      MODEL_3D,
      MODEL_DH
    } vpDisplayRobotType;
    
    
  protected:
    /*! cpu time at the begining of the robot's movement*/
    double tcur;
    /*! cpu time at the end of the last robot's movement*/
    double tprev;
    
    /*! Contains the 3D model of the robot's arms*/
    Bound_scene* robotArms;
    
    /*! Size of the fMi table*/
    unsigned int size_fMi;
    /*! Table containing all the homogeneous matrices between the reference frame of the robot and the frames you used to compute the Denavit-Hartenberg representation
    
    If you use a camera at the end of the effector, the last homogeneous matrix has to be the one between the reference frame and the camera frame (fMc)*/
    vpHomogeneousMatrix* fMi;
    
    /*! The articular coordinates*/
    vpColVector artCoord;
    /*! The articular velocity*/
    vpColVector artVel;
    /*! The velocity in the current frame (articular, camera or reference)*/
    vpColVector velocity;

#if defined(_WIN32)
    HANDLE hThread;
    HANDLE mutex_fMi;
    HANDLE mutex_artVel;
    HANDLE mutex_artCoord;
    HANDLE mutex_velocity;
    HANDLE mutex_display;
#elif defined(VISP_HAVE_PTHREAD)
    pthread_t thread;
    pthread_attr_t attr;
    pthread_mutex_t mutex_fMi;
    pthread_mutex_t mutex_artVel;
    pthread_mutex_t mutex_artCoord;
    pthread_mutex_t mutex_velocity;
    pthread_mutex_t mutex_display;
#endif
    
    bool displayBusy;

    /*! True if the robot has to be stopped*/
    bool robotStop;
    /*! True if one of the joint reach the limit*/
    bool jointLimit;
    /*! Index of the joint which is in limit*/
    unsigned int jointLimitArt;
    /*! True if the singularity are automatically managed */
    bool singularityManagement;
    
    /*! External camera parameters*/
    vpCameraParameters cameraParam;
    
    #if defined VISP_HAVE_X11
    vpDisplayX display;
	#elif defined VISP_HAVE_GDI
    vpDisplayGDI display;
    #elif defined VISP_HAVE_OPENCV
    vpDisplayOpenCV display;
    #elif defined VISP_HAVE_D3D9
    vpDisplayD3D display;
    #elif defined VISP_HAVE_GTK
    vpDisplayGTK display;
    #endif
    
    vpDisplayRobotType displayType;
    
    bool displayAllowed;
    //! Flag used to force the sampling time in the thread computing the robot's displacement to a constant value (\e samplingTime). It may be useful if the main thread (computing the features) is very time consumming. False by default.
    bool constantSamplingTimeMode;

    //! Flag used to specify to the thread managing the robot displacements that the setVelocity() method has been called.
    bool setVelocityCalled;

    bool verbose_;
    
  public:
    vpRobotWireFrameSimulator();
    vpRobotWireFrameSimulator(bool display);
    virtual ~vpRobotWireFrameSimulator();
    
    /*!
      Get the parameters of the virtual external camera.

      \return It returns the camera parameters.
    */
    vpCameraParameters getExternalCameraParameters() const {
      //if(px_ext != 1 && py_ext != 1)
      // we assume px_ext and py_ext > 0
      if( (std::fabs(px_ext-1.) > vpMath::maximum(px_ext,1.)*std::numeric_limits<double>::epsilon())
          && (std::fabs(py_ext-1) > vpMath::maximum(py_ext,1.)*std::numeric_limits<double>::epsilon()))
        return vpCameraParameters(px_ext,py_ext,I.getWidth()/2,I.getHeight()/2);
      else
      {
        unsigned int size = vpMath::minimum(I.getWidth(),I.getHeight())/2;
        return vpCameraParameters(size,size,I.getWidth()/2,I.getHeight()/2);
      }
    }
    /*!
      Get the external camera's position relative to the the world reference frame.

      \return the main external camera position relative to the the world reference frame.
    */
    vpHomogeneousMatrix getExternalCameraPosition() const
    {
      return this->vpWireFrameSimulator::getExternalCameraPosition();
    }

    void getInternalView(vpImage<vpRGBa> &I);
    void getInternalView(vpImage<unsigned char> &I);

    vpHomogeneousMatrix get_cMo();
    /*!
      Get the pose between the object and the fixed world frame.

      \return The pose between the object and the fixed world frame.
    */
    vpHomogeneousMatrix get_fMo() const {return fMo;}

    /* Display functions */
    void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject);
    void initScene(const char* obj, const char* desiredObject);
    void initScene (const vpSceneObject &obj);
    void initScene(const char* obj);

    /*!
      Set the color used to display the camera in the external view.

      \param col : The desired color.
    */
    void setCameraColor(const vpColor col) {camColor = col;}

    /*!
      Set the flag used to force the sampling time in the thread computing the
      robot's displacement to a constant value; see setSamplingTime(). It may be
      useful if the main thread (computing the features) is very time consuming.
      False by default.

      \param _constantSamplingTimeMode : The new value of the constantSamplingTimeMode flag.
    */
    inline void setConstantSamplingTimeMode(const bool _constantSamplingTimeMode){
      constantSamplingTimeMode = _constantSamplingTimeMode;
    }

    /*!
      Set the color used to display the object at the current position in the robot's camera view.

      \param col : The desired color.
    */
    void setCurrentViewColor(const vpColor col) {curColor = col;}

    /*!
      Set the color used to display the object at the desired position in the robot's camera view.

      \param col : The desired color.
    */
    void setDesiredViewColor(const vpColor col) {desColor = col;}

    /*!
      Set the desired position of the robot's camera relative to the object.

      \param cdMo_ : The desired pose of the camera.
    */
    void setDesiredCameraPosition(const vpHomogeneousMatrix cdMo_)
    {
      this->vpWireFrameSimulator::setDesiredCameraPosition(cdMo_);
    }

    /*!
      Set the way to draw the robot. Depending on what you choose you can display a 3D wireframe model or a set of lines linking the frames used to compute the geometrical model.

      \param dispType : Type of display. Can be MODEL_3D or MODEL_DH.
    */
    inline void setDisplayRobotType (const vpDisplayRobotType dispType) {displayType = dispType;}
    /*!
      Set the external camera point of view.

      \param camMf_ : The pose of the external camera relative to the world reference frame.
    */
    void setExternalCameraPosition(const vpHomogeneousMatrix camMf_)
    {
      this->vpWireFrameSimulator::setExternalCameraPosition(camMf_);
    }
    /*!
      Specify the thickness of the graphics drawings.
      */
    void setGraphicsThickness(unsigned int thickness)
    {
      this->thickness_ = thickness;
    }

    /*!
      Set the sampling time.

      \param delta_t : Sampling time in second used to compute the robot displacement from
      the velocity applied to the robot during this time.

      Since the wireframe simulator is threaded, the sampling time is set to vpTime::minTimeForUsleepCall / 1000 seconds.

    */
    inline void setSamplingTime(const double &delta_t)
    {
      if(delta_t < static_cast<float>(vpTime::minTimeForUsleepCall * 1e-3)){
        this->delta_t_ = static_cast<float>(vpTime::minTimeForUsleepCall * 1e-3);
      } else {
        this->delta_t_ = delta_t;
      }
    }
    /*! Set the parameter which enable or disable the singularity mangement */
    void setSingularityManagement (const bool sm) {singularityManagement = sm;}
              
    /*!
      Activates extra printings when the robot reaches joint limits...
      */
    void setVerbose(bool verbose)
    {
      this->verbose_ = verbose;
    }

    /*!
      Set the pose between the object and the fixed world frame.
      
      \param fMo_ : The pose between the object and the fixed world frame.
    */
    void set_fMo(const vpHomogeneousMatrix &fMo_) {this->fMo = fMo_;}

  protected:
    /*!
      Function used to launch the thread which moves the robot.
    */
    #if defined(_WIN32)
	static DWORD WINAPI launcher( LPVOID lpParam ) 
	{
    ((vpRobotWireFrameSimulator *)lpParam)->updateArticularPosition();
		return 0;
	}
    #elif defined(VISP_HAVE_PTHREAD)
    static void* launcher(void *arg)
    {
      (reinterpret_cast<vpRobotWireFrameSimulator *>(arg))->updateArticularPosition();
      // pthread_exit((void*) 0);
      return NULL;
    }    
    #endif
    
    /* Robot functions */
    void init() {;}
    /*! Method lauched by the thread to compute the position of the robot in the articular frame. */
    virtual void updateArticularPosition() = 0;
    /*! Method used to check if the robot reached a joint limit. */
    virtual int isInJointLimit () = 0;
    /*! Compute the articular velocity relative to the velocity in another frame. */
    virtual void computeArticularVelocity() = 0;

    /* Display functions */
    void initDisplay() {;}
    virtual void initArms() = 0;

	#if defined(_WIN32)
    vpColVector get_artCoord() const {
      WaitForSingleObject(mutex_artCoord,INFINITE);
      vpColVector artCoordTmp (6);
      artCoordTmp = artCoord;
      ReleaseMutex(mutex_artCoord);
      return artCoordTmp;}
    void set_artCoord(const vpColVector &coord) {
      WaitForSingleObject(mutex_artCoord,INFINITE);
      artCoord = coord;
      ReleaseMutex(mutex_artCoord);}
    
    vpColVector get_artVel() const {
      WaitForSingleObject(mutex_artVel,INFINITE);
      vpColVector artVelTmp (artVel);
      ReleaseMutex(mutex_artVel);
      return artVelTmp;}
    void set_artVel(const vpColVector &vel) {
      WaitForSingleObject(mutex_artVel,INFINITE);
      artVel = vel;
      ReleaseMutex(mutex_artVel);}
    
    vpColVector get_velocity() {
      WaitForSingleObject(mutex_velocity,INFINITE);
      vpColVector velocityTmp = velocity;
      ReleaseMutex(mutex_velocity);
      return velocityTmp;}
    void set_velocity(const vpColVector &vel) {
      WaitForSingleObject(mutex_velocity,INFINITE);
      velocity = vel;
      ReleaseMutex(mutex_velocity);}
      
    void set_displayBusy (const bool &status) {
      WaitForSingleObject(mutex_display,INFINITE);
      displayBusy = status;
      ReleaseMutex(mutex_display);}
    bool get_displayBusy () {
      WaitForSingleObject(mutex_display,INFINITE);
      bool status = displayBusy;
      if (!displayBusy) displayBusy = true;
      ReleaseMutex(mutex_display);
      return status;}

    #elif defined(VISP_HAVE_PTHREAD)
    vpColVector get_artCoord() {
      pthread_mutex_lock (&mutex_artCoord);
      vpColVector artCoordTmp (6);
      artCoordTmp = artCoord;
      pthread_mutex_unlock (&mutex_artCoord);
      return artCoordTmp;}
    void set_artCoord(const vpColVector &coord) {
      pthread_mutex_lock (&mutex_artCoord);
      artCoord = coord;
      pthread_mutex_unlock (&mutex_artCoord);}
    
    vpColVector get_artVel() {
      pthread_mutex_lock (&mutex_artVel);
      vpColVector artVelTmp (artVel);
      pthread_mutex_unlock (&mutex_artVel);
      return artVelTmp;}
    void set_artVel(const vpColVector &vel) {
      pthread_mutex_lock (&mutex_artVel);
      artVel = vel;
      pthread_mutex_unlock (&mutex_artVel);}
    
    vpColVector get_velocity() {
      pthread_mutex_lock (&mutex_velocity);
      vpColVector velocityTmp = velocity;
      pthread_mutex_unlock (&mutex_velocity);
      return velocityTmp;}
    void set_velocity(const vpColVector &vel) {
      pthread_mutex_lock (&mutex_velocity);
      velocity = vel;
      pthread_mutex_unlock (&mutex_velocity);}
      
    void set_displayBusy (const bool &status) {
      pthread_mutex_lock (&mutex_display);
      displayBusy = status;
      pthread_mutex_unlock (&mutex_display);}
    bool get_displayBusy () {
      pthread_mutex_lock (&mutex_display);
      bool status = displayBusy;
      if (!displayBusy) displayBusy = true;
      pthread_mutex_unlock (&mutex_display);
      return status;}
    #endif

    /*! Get a table of poses between the reference frame and the frames you used to compute the Denavit-Hartenberg representation */
    virtual void get_fMi(vpHomogeneousMatrix *fMit) = 0;
};

#endif

#endif