This file is indexed.

/usr/include/visp/vpRxyzVector.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/****************************************************************************
 *
 * $Id: vpRxyzVector.h 4632 2014-02-03 17:06:40Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Rxyz angle parameterization for the rotation.
 * Rxyz(phi,theta,psi) = Rot(x,phi)Rot(y,theta)Rot(z,psi).
 *
 * Authors:
 * Eric Marchand
 * Fabien Spindler
 *
 *****************************************************************************/


#ifndef vpRxyzVECTOR_H
#define vpRxyzVECTOR_H

/*!
  \file vpRxyzVector.h

  \brief Class that consider the case of the Rxyz angle
  parameterization for the rotation.

  Rxyz(phi,theta,psi) = Rot(x,phi)Rot(y,theta)Rot(z,psi)
*/

#include <visp/vpMatrix.h>
#include <visp/vpRotationVector.h>
#include <visp/vpRotationMatrix.h>

class vpRotationMatrix;
class vpThetaUVector;

/*!
  \class vpRxyzVector

  \ingroup RotTransformation

  \brief Class that consider the case of the Euler
  \f$(\varphi,\theta,\psi)\f$ angle using the x-y-z convention, where \f$(\varphi,\theta,\psi)\f$ are respectively the
  rotation angles around the \f$x\f$, \f$y\f$ and \f$z\f$ axis.

  \f[R_{xyz}(\varphi,\theta,\psi) = R_x(\varphi) \; R_y(\theta) \; R_z(\psi)\f]

  with

  \f[R_{x}(\varphi) = \left(
  \begin{array}{ccc}
  1 & 0 & 0 \\
  0 &\cos \varphi & -\sin\varphi \\
  0 &\sin \varphi & \cos\varphi \\
  \end{array}
  \right) \;
  R_{y}(\theta) = \left(
  \begin{array}{ccc}
  \cos \theta & 0 & \sin\theta\\
  0 & 1 & 0 \\
  -\sin\theta & 0 &\cos \theta
  \end{array}
  \right) \;
  R_{z}(\psi) = \left(
  \begin{array}{ccc}
  \cos \psi & -\sin\psi & 0\\
  \sin\psi &\cos \psi& 0 \\
  0 & 0 & 1
  \end{array}
  \right)\f]

  The rotation matrix corresponding to the x-y-z convention is given by:

  \f[
  R_{xyz}(\varphi,\theta,\psi) = \left(
  \begin{array}{ccc}
  \cos\theta \cos\psi & -\cos\theta \sin\psi & \sin\theta \\
  \sin\varphi \sin\theta \cos\psi + \cos\varphi\sin\psi & -\sin\varphi \sin\theta \sin\psi +\cos\varphi\cos\psi & -\sin\varphi \cos\theta \\
  -\cos\varphi \sin\theta \cos\psi + \sin\varphi\sin\psi & \cos\varphi \sin\theta \sin\psi +\sin\varphi\cos\psi & \cos\varphi \cos\theta
  \end{array}
  \right)
  \f]

  The code below shows first how to initialize this representation of
  Euler angles, than how to contruct a rotation matrix from a
  vpRxyzVector and finaly how to extract the vpRxyzVector Euler angles
  from the build rotation matrix.

  \code
#include <iostream>
#include <visp/vpMath.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpRxyzVector.h>

int main()
{
  vpRxyzVector rxyz;

  // Initialise the Euler angles
  rxyz[0] = vpMath::rad( 45.f); // phi   angle in rad around x axis 
  rxyz[1] = vpMath::rad(-30.f); // theta angle in rad around y axis
  rxyz[2] = vpMath::rad( 90.f); // psi   angle in rad around z axis

  // Construct a rotation matrix from the Euler angles
  vpRotationMatrix R(rxyz);

  // Extract the Euler angles around x,y,z axis from a rotation matrix
  rxyz.buildFrom(R);

  // Print the extracted Euler angles. Values are the same than the
  // one used for initialization
  std::cout << rxyz; 

  // Since the rotation vector is 3 values column vector, the
  // transpose operation produce a row vector.
  vpRowVector rxyz_t = rxyz.t();
  
  // Print the transpose row vector
  std::cout << rxyz_t << std::endl;
}
  \endcode

*/

class VISP_EXPORT vpRxyzVector : public vpRotationVector
{
  friend class vpRotationMatrix;
  friend class vpThetaUVector;
  
 public:
  /*! Default constructor that initialize all the angles to zero. */
  vpRxyzVector() {}
  /*! Copy constructor. */
  vpRxyzVector(const vpRxyzVector &rxyz) : vpRotationVector(rxyz) {}

  /*!
    Constructor from 3 angles (in radian).
    \param phi : \f$\varphi\f$ angle around the \f$x\f$ axis.
    \param theta : \f$\theta\f$ angle around the \f$y\f$ axis.
    \param psi : \f$\psi\f$ angle around the \f$z\f$ axis.
  */
  vpRxyzVector(const double phi, const double theta, const double psi) :
    vpRotationVector (3) { r[0]=phi;r[1]=theta;r[2]=psi; }

  // initialize a Rxyz vector from a rotation matrix
  vpRxyzVector(const vpRotationMatrix& R) ;

  // initialize a Rxyz vector from a ThetaU vector
  vpRxyzVector(const vpThetaUVector&  tu) ;

  /*!
    Construction from 3 angles (in radian).
    \param phi : \f$\varphi\f$ angle around the \f$x\f$ axis.
    \param theta : \f$\theta\f$ angle around the \f$y\f$ axis.
    \param psi : \f$\psi\f$ angle around the \f$z\f$ axis.
  */
  void buildFrom(const double phi, const double theta, const double psi)
  {
    r[0] = phi ;
    r[1] = theta ;
    r[2] = psi ;
  }

  // convert a rotation matrix into Rxyz vector
  vpRxyzVector buildFrom(const vpRotationMatrix& R) ;

  // convert a ThetaU vector into a Rxyz vector
  vpRxyzVector buildFrom(const vpThetaUVector& tu) ;

} ;

#endif