This file is indexed.

/usr/include/visp/vpServo.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/****************************************************************************
 *
 * $Id: vpServo.h 4674 2014-02-17 15:34:41Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Visual servoing control law.
 *
 * Authors:
 * Eric Marchand
 * Nicolas Mansard
 * Fabien Spindler
 *
 *****************************************************************************/


#ifndef vpServo_H
#define vpServo_H

/*!
  \file vpServo.h
  \brief  Class required to compute the visual servoing control law
*/

#include <list>

#include <visp/vpMatrix.h>
#include <visp/vpVelocityTwistMatrix.h>
#include <visp/vpBasicFeature.h>
#include <visp/vpServoException.h>
#include <visp/vpAdaptiveGain.h>


/*!
  \class vpServo

  \ingroup VsTask
  Class required to compute the visual servoing control law descbribed
  in \cite Chaumette06a and \cite Chaumette07a.

  \warning To avoid potential memory leaks, it is mendatory to call
  explicitly the kill() function to destroy the task. Otherwise, the
  destructor ~vpServo() launch an exception
  vpServoException::notKilledProperly.

  To learn how to use this class, we suggest first to follow the \ref tutorial-ibvs.
  The \ref tutorial-simu-robot-pioneer and \ref tutorial-boost-vs are also useful
  for advanced usage of this class.

  The example below shows how to build a position-based visual servo
  from 3D visual features \f$s=({^{c^*}}t_c,\theta u)\f$. In that
  case, we have \f$s^* = 0\f$. Let us denote \f$\theta u\f$ the angle/axis
  parametrization of the rotation \f${^{c^*}}R_c\f$. Moreover,\f$
  {^{c^*}}t_c\f$ and \f${^{c^*}}R_c\f$ represent respectively the
  translation and the rotation between the desired camera frame and
  the current one obtained by pose estimation (see vpPose class).

  \code
#include <visp/vpColVector.h>
#include <visp/vpFeatureThetaU.h>
#include <visp/vpFeatureTranslation.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
#include <visp/vpServo.h>

int main()
{
  // Creation of an homogeneous matrix that represent the displacement
  // the camera has to achieve to move from the desired camera frame
  // and the current one
  vpHomogeneousMatrix cdMc;

  // ... cdMc is here the result of a pose estimation

  // Creation of the current visual feature s = (c*_t_c, ThetaU)
  vpFeatureTranslation s_t(vpFeatureTranslation::cdMc);
  vpFeatureThetaU s_tu(vpFeatureThetaU::cdRc);
  // Set the initial values of the current visual feature s = (c*_t_c, ThetaU)
  s_t.buildFrom(cdMc);
  s_tu.buildFrom(cdMc);

  // Build the desired visual feature s* = (0,0)
  vpFeatureTranslation s_star_t(vpFeatureTranslation::cdMc); // Default initialization to zero 
  vpFeatureThetaU s_star_tu(vpFeatureThetaU::cdRc);// Default initialization to zero 

  vpColVector v; // Camera velocity
  double error;  // Task error

  // Creation of the visual servo task.
  vpServo task;

  // Visual servo task initialization
  // - Camera is monted on the robot end-effector and velocities are
  //   computed in the camera frame
  task.setServo(vpServo::EYEINHAND_CAMERA); 
  // - Interaction matrix is computed with the current visual features s
  task.setInteractionMatrixType(vpServo::CURRENT); 
  // - Set the contant gain to 1
  task.setLambda(1);
  // - Add current and desired translation feature
  task.addFeature(s_t, s_star_t); 
  // - Add current and desired ThetaU feature for the rotation
  task.addFeature(s_tu, s_star_tu); 

  // Visual servoing loop. The objective is here to update the visual
  // features s = (c*_t_c, ThetaU), compute the control law and apply
  // it to the robot
  do {
    // ... cdMc is here the result of a pose estimation

    // Update the current visual feature s
    s_t.buildFrom(cdMc);  // Update translation visual feature
    s_tu.buildFrom(cdMc); // Update ThetaU visual feature

    v = task.computeControlLaw(); // Compute camera velocity skew
    error =  ( task.getError() ).sumSquare(); // error = s^2 - s_star^2
  } while (error > 0.0001); // Stop the task when current and desired visual features are close

  // A call to kill() is requested here to destroy properly the current
  // and desired feature lists.
  task.kill();
}
  \endcode

*/

class VISP_EXPORT vpServo
{
  /*
    Choice of the visual servoing control law
  */
public:
  typedef enum
    {
      NONE,
      /*!< No control law is specified. */
      EYEINHAND_CAMERA,
      /*!< Eye in hand visual servoing with the following control law
        \f[{\bf v}_c = -\lambda {\widehat {\bf L}}^{+}_{e} {\bf e}\f]
        where camera velocities are computed. */
      EYEINHAND_L_cVe_eJe,
      /*!< Eye in hand visual servoing with the following control law
        \f[{\dot {\bf q}} = -\lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\f]
        where joint velocities are computed. */
      EYETOHAND_L_cVe_eJe,
      /*!< Eye to hand visual servoing with the following control law
        \f[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\f]
        where joint velocities are computed. */
      EYETOHAND_L_cVf_fVe_eJe,
      /*!< Eye to hand visual servoing with the following control law
        \f[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_f {^f}{\bf V}_e {^e}{\bf J}_e} \right)^{+} {\bf e}\f]
        where joint velocities are computed. */
      EYETOHAND_L_cVf_fJe
      /*!< Eye to hand visual servoing with the following control law
        \f[{\dot {\bf q}} = \lambda \left( {{\widehat {\bf L}}_{e} {^c}{\bf V}_f {^f}{\bf J}_e} \right)^{+} {\bf e}\f]
        where joint velocities are computed. */
    } vpServoType;

  typedef enum
    {
      CURRENT,
      /*!< In the control law (see vpServo::vpServoType), uses the interaction matrix \f${\widehat {\bf L}}_s \f$computed using the current features \f$\bf s\f$. */
      DESIRED,
      /*!< In the control law (see vpServo::vpServoType), uses the interaction matrix \f${\widehat {\bf L}}_{s^*} \f$computed using the desired features \f${\bf s}^*\f$. */
      MEAN,
      /*!< In the control law (see vpServo::vpServoType), uses the interaction matrix \f${\widehat {\bf L}} = \left({\widehat {\bf L}}_s + {\widehat {\bf L}}_{s^*}\right)/2 \f$. */
      USER_DEFINED
      /*!< In the control law (see vpServo::vpServoType), uses an interaction matrix set by the user. */
    } vpServoIteractionMatrixType;

  typedef enum
    {
      TRANSPOSE,     /*!< In the control law (see vpServo::vpServoType), uses the transpose instead of the pseudo inverse. */
      PSEUDO_INVERSE /*!< In the control law (see vpServo::vpServoType), uses the pseudo inverse. */
    } vpServoInversionType;

  typedef enum
    {
      ALL,                /*!< Print all the task information. */
      CONTROLLER,         /*!< Print the type of controller law. */
      ERROR_VECTOR,       /*!< Print the error vector \f$\bf e = (s-s^*)\f$. */
      FEATURE_CURRENT,    /*!< Print the current features \f$\bf s\f$. */
      FEATURE_DESIRED,    /*!< Print the desired features \f${\bf s}^*\f$. */
      GAIN,               /*!< Print the gain \f$\lambda\f$. */
      INTERACTION_MATRIX, /*!< Print the interaction matrix. */
      MINIMUM             /*!< Same as vpServo::vpServoPrintType::ERROR_VECTOR. */
    } vpServoPrintType;

public:
  // default constructor
  vpServo();
  // constructor with Choice of the visual servoing control law
  vpServo(vpServoType servoType) ;
  // destructor
  virtual ~vpServo() ;

  // create a new ste of  two visual features
  void addFeature(vpBasicFeature& s, vpBasicFeature& s_star,
                  const unsigned int select=vpBasicFeature::FEATURE_ALL) ;
  // create a new ste of  two visual features
  void addFeature(vpBasicFeature& s,
                  const unsigned int select=vpBasicFeature::FEATURE_ALL) ;

  // compute the desired control law
  vpColVector computeControlLaw() ;
  // compute the desired control law
  vpColVector computeControlLaw(double t) ;
  vpColVector computeControlLaw(double t, const vpColVector &e_dot_init);

  // compute the error between the current set of visual features and
  // the desired set of visual features
  vpColVector computeError() ;
  // compute the interaction matrix related to the set of visual features
  vpMatrix computeInteractionMatrix() ;

  // Return the task dimension.
  unsigned int getDimension() const ;
  /*!
   Return the error \f$\bf e = (s - s^*)\f$ between the current set of visual features
   \f$\bf s\f$ and the desired set of visual features \f$\bf s^*\f$.
   The error vector is updated after a call of computeError() or computeControlLaw().
\code
  vpServo task;
  ...
  vpColVector v = task.computeControlLaw(); // Compute the velocity corresponding to the visual servoing
  vpColVector e = task.getError();          // Get the error vector
\endcode
   */
  inline vpColVector getError() const
  {
    return error ;
  }
  /*
     Return the interaction matrix \f$L\f$ used to compute the task jacobian \f$J_1\f$.
     The interaction matrix is updated after a call to computeInteractionMatrix() or computeControlLaw().

 \code
   vpServo task;
   ...
   vpColVector v = task.computeControlLaw();    // Compute the velocity corresponding to the visual servoing
   vpMatrix    L = task.getInteractionMatrix(); // Get the interaction matrix used to compute v
 \endcode
     \sa getTaskJacobian()
   */
  inline vpMatrix getInteractionMatrix() const
  {
    return L;
  }

  vpMatrix getI_WpW() const;
  /*!
     Return the visual servo type.
   */
  inline vpServoType getServoType() const
  {
    return servoType;
  }

  vpMatrix getTaskJacobian() const;
  vpMatrix getTaskJacobianPseudoInverse() const;
  unsigned int getTaskRank() const;

  /*!
     Get task singular values.

     \return Singular values that relies on the task jacobian pseudo inverse.
     */
  inline vpColVector getTaskSingularValues() const
  {
    return sv;
  }

  vpMatrix getWpW() const;

  /*!
    Return the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.
  */
  vpVelocityTwistMatrix get_cVe() const { return cVe; }
  /*!
    Return the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.
  */
  vpVelocityTwistMatrix get_cVf() const { return cVf; }
  /*!
    Return the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).
  */
  vpVelocityTwistMatrix get_fVe() const { return fVe; }
  /*!
    Return the robot jacobian expressed in the end-effector frame.
  */
  vpMatrix get_eJe() const { return eJe; }
  /*!
    Return the robot jacobian expressed in the robot fixed frame (also called world or base frame).
  */
  vpMatrix get_fJe() const { return fJe; }

  // destruction (memory deallocation if required)
  void kill() ;

  void print(const vpServo::vpServoPrintType display_level=ALL,
             std::ostream &os = std::cout) ;

  // Add a secondary task.
  vpColVector secondaryTask(const vpColVector &de2dt) ;
  // Add a secondary task.
  vpColVector secondaryTask(const vpColVector &e2, const vpColVector &de2dt) ;

  /*!
    Set a variable which enables to compute the interaction matrix at each iteration.

    When the interaction matrix is computed from the desired features \f${\bf s}^*\f$ which are in general constant,
    the interaction matrix \f${\widehat {\bf L}}_{s^*}\f$ is computed just at the first iteration of the servo loop.
    Sometimes, when the desired features are time dependent \f${{\bf s}(t)}^*\f$ or varying, the interaction matrix
    need to be computed at each iteration of the servo loop. This method allows to force the computation of
    \f${\widehat {\bf L}}\f$ in this particular case.

    \param force_computation: If true it forces the interaction matrix computation even if it is already done.

  */
  void setForceInteractionMatrixComputation(bool force_computation)
  {
    this->forceInteractionMatrixComputation = force_computation;
  }

  /*!
    Set the interaction matrix type (current, desired, mean or user defined) and how its inverse is computed.
    \param interactionMatrixType : The interaction matrix type. See vpServo::vpServoIteractionMatrixType for
    more details.
    \param interactionMatrixInversion : How is the inverse computed. See vpServo::vpServoInversionType for
    more details.
    */
  void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType,
                                const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE) ;

  /*!
    Set the gain \f$\lambda\f$ used in the control law (see vpServo::vpServoType) as constant.

    The usage of an adaptive gain allows to reduce the convergence time, see setLambda(const vpAdaptiveGain&).

    \param c : Constant gain. Values are in general between 0.1 and 1. Higher is the gain, higher are the velocities
    that may be applied to the robot.
   */
  void setLambda(double c)
  {
    lambda .initFromConstant (c) ;
  }

  /*!
    Set the gain \f$\lambda\f$ used in the control law (see vpServo::vpServoType) as adaptive.
    Value of \f$\lambda\f$ that is used in computeControlLaw() depend on the infinity norm of the task Jacobian.

    The usage of an adaptive gain rather than a constant gain allows to reduce the convergence time.

    \param gain_at_zero : the expected gain when \f$x=0\f$: \f$\lambda(0)\f$.
    \param gain_at_infinity : the expected gain when \f$x=\infty\f$: \f$\lambda(\infty)\f$.
    \param slope_at_zero : the expected slope of \f$\lambda(x)\f$ when \f$x=0\f$: \f${\dot \lambda}(0)\f$.

    For more details on these parameters see vpAdaptiveGain class.
   */
  void setLambda(const double gain_at_zero,
                 const double gain_at_infinity,
                 const double slope_at_zero)
  {
    lambda .initStandard (gain_at_zero, gain_at_infinity, slope_at_zero) ;
  }
  /*!
    Set the gain \f$\lambda\f$ used in the control law (see vpServo::vpServoType) as adaptive.
    Value of \f$\lambda\f$ that is used in computeControlLaw() depend on the infinity norm of the task Jacobian.

    The usage of an adaptive gain rather than a constant gain allows to reduce the convergence time.
    \sa vpAdaptiveGain
   */
  void setLambda(const vpAdaptiveGain& l){lambda=l;}
  /*!
    Set the value of the parameter \f$\mu\f$ used to ensure the continuity of the velocities
    computed using computeControlLaw(double).

    A recommended value is 4.
  */
  void setMu(double mu_){this->mu=mu_;}
  //  Choice of the visual servoing control law
  void setServo(const vpServoType &servo_type) ;

  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.
   */
  void set_cVe(const vpVelocityTwistMatrix &cVe_) { this->cVe = cVe_ ; init_cVe = true ; }
  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from end-effector frame into the camera frame.
   */
  void set_cVe(const vpHomogeneousMatrix &cMe) { cVe.buildFrom(cMe); init_cVe=true ;}
  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.
   */
  void set_cVf(const vpVelocityTwistMatrix &cVf_) { this->cVf = cVf_ ; init_cVf = true ; }
  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from robot fixed frame (also called world or base frame) into the camera frame.
   */
  void set_cVf(const vpHomogeneousMatrix &cMf) { cVf.buildFrom(cMf); init_cVf=true ;}
  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).
   */
  void set_fVe(const vpVelocityTwistMatrix &fVe_) { this->fVe = fVe_ ; init_fVe = true ; }
  /*!
    Set the velocity twist matrix used to transform a velocity skew vector from robot end-effector frame into the fixed frame (also called world or base frame).
   */
  void set_fVe(const vpHomogeneousMatrix &fMe) { fVe.buildFrom(fMe); init_fVe=true ;}

  /*!
    Set the robot jacobian expressed in the end-effector frame.
   */
  void set_eJe(const vpMatrix &eJe_) { this->eJe = eJe_ ; init_eJe = true ; }
  /*!
    Set the robot jacobian expressed in the robot fixed frame (also called world or base frame).
   */
  void set_fJe(const vpMatrix &fJe_) { this->fJe = fJe_ ; init_fJe = true ; }

  /*!
    Test if all the initialization are correct. If true, the control law can be computed.
    */
  bool testInitialization() ;
  /*!
    Test if all the update are correct. If true control law can be computed.
    */
  bool testUpdated() ;

  protected:
  //! Basic initialization.
  void init() ;

  public:
  //! Interaction matrix
  vpMatrix L ;
  //! Error \f$(s - s^*)\f$ between the current set of visual features
  //! \f$s\f$ and the desired set of visual features \f$s^*\f$.
  //! This vector is updated after a call of computeError() or computeControlLaw().
  vpColVector error ;
  //! Task Jacobian  \f$J_1 = L {^c}V_a {^a}J_e\f$.
  vpMatrix J1 ;
  //! Pseudo inverse \f${J_1}^{+}\f$ of the task Jacobian.
  vpMatrix J1p ;

  //! Current state of visual features \f$s\f$.
  //! This vector is updated after a call of computeError() or computeControlLaw().
  vpColVector s ;
  //! Desired state of visual features \f$s^*\f$.
  //! This vector is updated after a call of computeError() or computeControlLaw().
  vpColVector sStar ;

  //! Primary task \f$e_1 = {J_1}^{+}(s-s*)\f$
  vpColVector e1 ;
  //! Task \f$e = e_1 + (I-{J_1}^{+} J_1) e_2\f$
  vpColVector e ;

  //! Articular velocity
  vpColVector q_dot ;
  //! Camera velocity
  vpColVector v ;

  //! Chosen visual servoing control law
  vpServoType servoType;

  //! Rank of the task Jacobian
  unsigned int rankJ1 ;

  //! List of current visual features \f$\bf s\f$.
  std::list<vpBasicFeature *> featureList ;
  //! List of desired visual features \f$\bf s^*\f$.
  std::list<vpBasicFeature *> desiredFeatureList ;
  //! List of selection among visual features
  //! used for selection of a subset of each visual feature if required.
  std::list<unsigned int> featureSelectionList ;

  //! Gain used in the control law.
  vpAdaptiveGain lambda ;

  //! Sign of the interaction +/- 1 (1 for eye-in-hand, -1 for
  //! eye-to-hand configuration)
  int signInteractionMatrix ;
  //! Type of the interaction matrox (current, mean, desired, user)
  vpServoIteractionMatrixType interactionMatrixType ;
  //! Indicates if the transpose or the pseudo inverse of the
  //! interaction matrix should be used to compute the task.
  vpServoInversionType inversionType ;

  protected:
  /*
    Twist transformation matrix
  */

  //! Twist transformation matrix between Re and Rc.
  vpVelocityTwistMatrix cVe ;
  bool init_cVe ;
  //! Twist transformation matrix between Rf and Rc.
  vpVelocityTwistMatrix cVf ;
  bool init_cVf ;
  //! Twist transformation matrix between Re and Rf.
  vpVelocityTwistMatrix fVe ;
  bool init_fVe ;

  /*
    Jacobians
  */

  //! Jacobian expressed in the end-effector frame.
  vpMatrix eJe ;
  bool init_eJe ;
  //! Jacobian expressed in the robot reference frame.
  vpMatrix fJe ;
  bool init_fJe ;

  /*
    Task building
  */

  //! true if the error has been computed.
  bool errorComputed ;
  //! true if the interaction matrix has been computed.
  bool interactionMatrixComputed ;
  //! Dimension of the task updated during computeControlLaw().
  unsigned int dim_task ;
  //! Flag to indicate if the task was killed
  bool taskWasKilled;
  //! Force the interaction matrix computation even if it is already done.
  bool forceInteractionMatrixComputation;

  //! Projection operators \f$\bf WpW\f$.
  vpMatrix WpW ;
  //! Projection operators \f$\bf I-WpW\f$.
  vpMatrix I_WpW ;

  //! Singular values from the pseudo inverse.
  vpColVector sv ;

  double mu;
} ;

#endif