/usr/include/visp/vpSimulatorCamera.h is in libvisp-dev 2.9.0-3+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | /****************************************************************************
*
* $Id: vpSimulatorCamera.h 2456 2010-01-07 10:33:12Z nmelchio $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Defines the simplest robot : a free flying camera.
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#ifndef vpSimulatorCamera_H
#define vpSimulatorCamera_H
/*!
\file vpSimulatorCamera.h
\brief class that defines the simplest robot : a free flying camera
*/
#include <visp/vpColVector.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
#include <visp/vpRobot.h>
#include <visp/vpRobotSimulator.h>
/*!
\class vpSimulatorCamera
\ingroup RobotSimuWithoutVisu
\brief Class that defines the simplest robot: a free flying camera.
This free flying camera has 6 dof; 3 in translation and 3 in rotation.
It evolves as a gentry robot with respect to a world frame. This class
is similar to vpRobotCamera class except that here the position of the robot
is provided as the transformation from world frame to camera frame; wMc. This
representation is more intuitive than the one implemented in vpRobotCamera
where the transformation from camera to world frame is considered; cMw.
For this particular simulated robot, the end-effector and camera frame are confused.
That means that the cMe transformation is equal to identity.
The robot jacobian expressed in the end-effector frame
\f$ {^e}{\bf J}_e \f$ is also set to identity (see get_eJe()).
The following code shows how to control this robot in position and velocity.
\code
#include <visp/vpSimulatorCamera.h>
int main()
{
vpHomogeneousMatrix wMc;
vpSimulatorCamera robot;
robot.getPosition(wMc); // Position of the camera in the world frame
std::cout << "Default position of the camera in the world frame wMc:\n" << wMc << std::endl;
wMc[2][3] = 1.; // Camera frame is 1 meter along z axis in front of the world frame
robot.setPosition(wMc); // Set the new position of the camera in the world frame
std::cout << "New position of the camera in the world frame wMc:\n" << wMc << std::endl;
robot.setSamplingTime(0.100); // Modify the default sampling time to 0.1 second
robot.setMaxTranslationVelocity(1.); // vx, vy and vz max set to 1 m/s
robot.setMaxRotationVelocity(vpMath::rad(90)); // wx, wy and wz max set to 90 deg/s
vpColVector v(6);
v = 0;
v[2] = 1.; // set v_z to 1 m/s
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
// The robot has moved from 0.1 meters along the z axis
robot.getPosition(wMc); // Position of the camera in the world frame
std::cout << "New position of the camera wMc:\n" << wMc << std::endl;
}
\endcode
To know how this class can be used to achieve a visual servoing simulation,
you can follow the \ref tutorial-ibvs.
*/
class VISP_EXPORT vpSimulatorCamera : public vpRobotSimulator
{
protected:
vpHomogeneousMatrix wMc_; // world to camera
public:
vpSimulatorCamera() ;
virtual ~vpSimulatorCamera() ;
public:
void get_cVe(vpVelocityTwistMatrix &cVe) const;
void get_eJe(vpMatrix &eJe);
void getPosition(vpHomogeneousMatrix &wMc) const;
void getPosition(const vpRobot::vpControlFrameType frame, vpColVector &q);
void setPosition(const vpHomogeneousMatrix &wMc);
void setVelocity(const vpRobot::vpControlFrameType frame,
const vpColVector &vel) ;
private:
void init() ;
// Non implemented virtual pure functions
void get_fJe(vpMatrix & /*_fJe */) {};
void getDisplacement(const vpRobot::vpControlFrameType /* frame */, vpColVector & /* q */) {};
void setPosition(const vpRobot::vpControlFrameType /* frame */, const vpColVector & /* q */) {};
} ;
#endif
|