This file is indexed.

/usr/include/visp/vpThetaUVector.h is in libvisp-dev 2.9.0-3+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/****************************************************************************
 *
 * $Id: vpThetaUVector.h 4632 2014-02-03 17:06:40Z fspindle $
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact INRIA about acquiring a ViSP Professional 
 * Edition License.
 *
 * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
 * 
 * This software was developed at:
 * INRIA Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 * http://www.irisa.fr/lagadic
 *
 * If you have questions regarding the use of this file, please contact
 * INRIA at visp@inria.fr
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * Description:
 * Theta U parameterization for the rotation.
 *
 * Authors:
 * Eric Marchand
 *
 *****************************************************************************/


#ifndef vpTHETAUVECTOR_H
#define vpTHETAUVECTOR_H

/*!
  \file vpThetaUVector.h
  \brief class that consider the case of the Theta U parameterization for the
  rotation
*/

class vpHomogeneousMatrix;
class vpRotationMatrix;
class vpRzyxVector;
class vpRxyzVector;
class vpRzyzVector;

#include <visp/vpRotationVector.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpRxyzVector.h>
#include <visp/vpRzyxVector.h>


/*!
  \class vpThetaUVector

  \ingroup RotTransformation

  \brief Class that consider the case of the \f$\theta {\bf u}\f$
  parameterization for the rotation.

  The \f$\theta {\bf u}\f$ representation is one of the minimal
  representation of a rotation matrix, where 
  \f${\bf u} = (u_{x} \; u_{y} \; u_{z})^{\top}\f$ 
  is a unit vector representing the rotation
  axis and \f$\theta\f$ is the rotation angle.

  From the \f$\theta {\bf u}\f$ representation it is possible to build the
  rotation matrix \f${\bf R}\f$ using the Rodrigues formula:

  \f[
  {\bf R} =  {\bf I}_{3} + (1 - \cos{ \theta}) \; {\bf u u}^{\top} + \sin{ \theta} \; [{\bf u}]_{\times}
  \f]

  with \f${\bf I}_{3}\f$ the identity matrix of dimension
  \f$3\times3\f$ and \f$[{\bf u}]_{\times}\f$ the skew matrix:

  \f[
  [{\bf u}]_{\times} = \left(
  \begin{array}{ccc}    
  0 & -u_{z} & u_{y} \\
  u_{z} & 0 & -u_{x} \\
  -u_{y} & u_{x} & 0
  \end{array}
  \right)
  \f]
  From the implementation point of view, it is nothing more than an
  array of three floats. 

  The code below shows first how to initialize a \f$\theta {\bf u}\f$
  vector, than how to contruct a rotation matrix from a vpThetaUVector
  and finaly how to extract the theta U angles from the build rotation
  matrix.

  \code
#include <iostream>
#include <visp/vpMath.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpThetaUVector.h>

int main()
{
  vpThetaUVector tu;

  // Initialise the theta U rotation vector
  tu[0] = vpMath::rad( 45.f); 
  tu[1] = vpMath::rad(-30.f); 
  tu[2] = vpMath::rad( 90.f); 

  // Construct a rotation matrix from the theta U angles
  vpRotationMatrix R(tu);

  // Extract the theta U angles from a rotation matrix
  tu.buildFrom(R);

  // Print the extracted theta U angles. Values are the same than the
  // one used for initialization
  std::cout << tu; 

  // Since the rotation vector is 3 values column vector, the
  // transpose operation produce a row vector.
  vpRowVector tu_t = tu.t();
  
  // Print the transpose row vector
  std::cout << tu_t << std::endl;
}
  \endcode
*/
class VISP_EXPORT vpThetaUVector : public vpRotationVector
{

private:
  //! initialize a size 3 vector
  void init() ;

  static const double minimum;

public:

  /*! Default constructor that initialize all the angles to zero. */
  vpThetaUVector() {}
  /*! Copy constructor. */
  vpThetaUVector(const vpThetaUVector &tu) : vpRotationVector(tu) {}

  // constructor initialize a Theta U vector from a homogeneous matrix
  vpThetaUVector(const vpHomogeneousMatrix & M) ;
  // constructor initialize a Theta U vector from a rotation matrix
  vpThetaUVector(const vpRotationMatrix& R) ;
  // constructor initialize a Theta U vector from a RzyxVector
  vpThetaUVector(const vpRzyxVector& rzyx) ;
  // constructor initialize a Theta U vector from a RzyzVector
  vpThetaUVector(const vpRzyzVector& rzyz) ;
  // constructor initialize a Theta U vector from a RxyzVector
  vpThetaUVector(const vpRxyzVector& rxyz) ;

  /*!
    Build a \f$\theta {\bf u}\f$ vector from 3 angles in radian.
  */
  vpThetaUVector(const double tux, const double tuy, const double tuz) :
    vpRotationVector (3) { r[0]=tux;r[1]=tuy;r[2]=tuz; }

  // convert an homogeneous matrix into Theta U vector
  vpThetaUVector buildFrom(const vpHomogeneousMatrix& M) ;
  // convert a rotation matrix into Theta U vector
  vpThetaUVector buildFrom(const vpRotationMatrix& R) ;
  // convert an Rzyx vector into Theta U vector
  vpThetaUVector buildFrom(const vpRzyxVector &rzyx) ;
  // convert an Rzyz vector into Theta U vector
  vpThetaUVector buildFrom(const vpRzyzVector &zyz) ;
  // convert an Rxyz vector into Theta U vector
  vpThetaUVector buildFrom(const vpRxyzVector &xyz) ;

  vpThetaUVector &operator=(double x) ;

  // extract the angle and the axis from the ThetaU representation
  void extract( double &theta, vpColVector &u) const;
} ;

#endif

/*
 * Local variables:
 * c-basic-offset: 2
 * End:
 */