/usr/include/visp/vpThetaUVector.h is in libvisp-dev 2.9.0-3+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | /****************************************************************************
*
* $Id: vpThetaUVector.h 4632 2014-02-03 17:06:40Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Theta U parameterization for the rotation.
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#ifndef vpTHETAUVECTOR_H
#define vpTHETAUVECTOR_H
/*!
\file vpThetaUVector.h
\brief class that consider the case of the Theta U parameterization for the
rotation
*/
class vpHomogeneousMatrix;
class vpRotationMatrix;
class vpRzyxVector;
class vpRxyzVector;
class vpRzyzVector;
#include <visp/vpRotationVector.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpRxyzVector.h>
#include <visp/vpRzyxVector.h>
/*!
\class vpThetaUVector
\ingroup RotTransformation
\brief Class that consider the case of the \f$\theta {\bf u}\f$
parameterization for the rotation.
The \f$\theta {\bf u}\f$ representation is one of the minimal
representation of a rotation matrix, where
\f${\bf u} = (u_{x} \; u_{y} \; u_{z})^{\top}\f$
is a unit vector representing the rotation
axis and \f$\theta\f$ is the rotation angle.
From the \f$\theta {\bf u}\f$ representation it is possible to build the
rotation matrix \f${\bf R}\f$ using the Rodrigues formula:
\f[
{\bf R} = {\bf I}_{3} + (1 - \cos{ \theta}) \; {\bf u u}^{\top} + \sin{ \theta} \; [{\bf u}]_{\times}
\f]
with \f${\bf I}_{3}\f$ the identity matrix of dimension
\f$3\times3\f$ and \f$[{\bf u}]_{\times}\f$ the skew matrix:
\f[
[{\bf u}]_{\times} = \left(
\begin{array}{ccc}
0 & -u_{z} & u_{y} \\
u_{z} & 0 & -u_{x} \\
-u_{y} & u_{x} & 0
\end{array}
\right)
\f]
From the implementation point of view, it is nothing more than an
array of three floats.
The code below shows first how to initialize a \f$\theta {\bf u}\f$
vector, than how to contruct a rotation matrix from a vpThetaUVector
and finaly how to extract the theta U angles from the build rotation
matrix.
\code
#include <iostream>
#include <visp/vpMath.h>
#include <visp/vpRotationMatrix.h>
#include <visp/vpThetaUVector.h>
int main()
{
vpThetaUVector tu;
// Initialise the theta U rotation vector
tu[0] = vpMath::rad( 45.f);
tu[1] = vpMath::rad(-30.f);
tu[2] = vpMath::rad( 90.f);
// Construct a rotation matrix from the theta U angles
vpRotationMatrix R(tu);
// Extract the theta U angles from a rotation matrix
tu.buildFrom(R);
// Print the extracted theta U angles. Values are the same than the
// one used for initialization
std::cout << tu;
// Since the rotation vector is 3 values column vector, the
// transpose operation produce a row vector.
vpRowVector tu_t = tu.t();
// Print the transpose row vector
std::cout << tu_t << std::endl;
}
\endcode
*/
class VISP_EXPORT vpThetaUVector : public vpRotationVector
{
private:
//! initialize a size 3 vector
void init() ;
static const double minimum;
public:
/*! Default constructor that initialize all the angles to zero. */
vpThetaUVector() {}
/*! Copy constructor. */
vpThetaUVector(const vpThetaUVector &tu) : vpRotationVector(tu) {}
// constructor initialize a Theta U vector from a homogeneous matrix
vpThetaUVector(const vpHomogeneousMatrix & M) ;
// constructor initialize a Theta U vector from a rotation matrix
vpThetaUVector(const vpRotationMatrix& R) ;
// constructor initialize a Theta U vector from a RzyxVector
vpThetaUVector(const vpRzyxVector& rzyx) ;
// constructor initialize a Theta U vector from a RzyzVector
vpThetaUVector(const vpRzyzVector& rzyz) ;
// constructor initialize a Theta U vector from a RxyzVector
vpThetaUVector(const vpRxyzVector& rxyz) ;
/*!
Build a \f$\theta {\bf u}\f$ vector from 3 angles in radian.
*/
vpThetaUVector(const double tux, const double tuy, const double tuz) :
vpRotationVector (3) { r[0]=tux;r[1]=tuy;r[2]=tuz; }
// convert an homogeneous matrix into Theta U vector
vpThetaUVector buildFrom(const vpHomogeneousMatrix& M) ;
// convert a rotation matrix into Theta U vector
vpThetaUVector buildFrom(const vpRotationMatrix& R) ;
// convert an Rzyx vector into Theta U vector
vpThetaUVector buildFrom(const vpRzyxVector &rzyx) ;
// convert an Rzyz vector into Theta U vector
vpThetaUVector buildFrom(const vpRzyzVector &zyz) ;
// convert an Rxyz vector into Theta U vector
vpThetaUVector buildFrom(const vpRxyzVector &xyz) ;
vpThetaUVector &operator=(double x) ;
// extract the angle and the axis from the ThetaU representation
void extract( double &theta, vpColVector &u) const;
} ;
#endif
/*
* Local variables:
* c-basic-offset: 2
* End:
*/
|