/usr/include/votca/tools/matrix.h is in libvotca-tools-dev 1.2.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /*
* Copyright 2009-2011 The VOTCA Development Team (http://www.votca.org)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _mat_H
#define _mat_H
#include "types.h"
#include "ostream"
#include "vec.h"
namespace votca { namespace tools {
class matrix
{
public:
matrix() {};
matrix(const double &v) { *this=v; }
matrix(const matrix &m) { *this=m; }
matrix(double arr[9]) {*this=arr; }
matrix(const vec& a, const vec& b, const vec& c){
_m[0]=a.getX(); _m[1]=b.getX(); _m[2]=c.getX();
_m[3]=a.getY(); _m[4]=b.getY(); _m[5]=c.getY();
_m[6]=a.getZ(); _m[7]=b.getZ(); _m[8]=c.getZ();
} // takes three vectors and creates a matrix with them as columns
void Invert();
matrix &operator=(const double &v);
matrix &operator=(const matrix &v);
matrix &operator=(double [9]);
//vec &operator+=(const vec &v);
//vec &operator-=(const vec &v);
matrix &operator*=(const double &d){
for(size_t i=0; i<9; ++i) _m[i] *=d;
return *this;
}
//matrix &operator*(const double &d){
//}
matrix &operator/=(const double &d){
for(size_t i=0; i<9; ++i) _m[i] /=d;
return *this;
}
matrix &operator-=(const matrix &v){
for(size_t i=0; i<9; ++i) _m[i] -= v._m[i];
return *this;
}
matrix &operator+=(const matrix &v){
for(size_t i=0; i<9; ++i) _m[i] += v._m[i];
return *this;
}
/**
* \brief initialize the matrix with zeros
*/
void ZeroMatrix();
/**
* \brief initialize the matrix as identity
*/
void UnitMatrix();
/**
* \brief set an element of the matrix
* @param i row
* @param j column
* @param v value
*/
void set(const byte_t &i, const byte_t &j, const double &v) { _m[i*3+j] = v; }
/**
* \brief get an element of the matrix
*/
const double &get(const byte_t &i, const byte_t &j) const { return _m[i*3+j]; }
/**
* \brief get a row vector
* @param i row
* @return row vector i
*/
vec getRow(const byte_t &i) const { return vec(&_m[i*3]); }
/**
* \brief get a column vector
* @param i column
* @return column vector i
*/
vec getCol(const byte_t &i) const { return vec(_m[i], _m[i+3], _m[i+6]); }
/**
* \brief direct read/write access
* @param i row
* @return pointer to beginning of row i
* use it as matrix[a][b]
*/
double *operator[](size_t i) { return &_m[i*3]; }
struct eigensystem_t {
double eigenvalues[3];
vec eigenvecs[3];
eigensystem_t operator+=(const eigensystem_t &e) {
eigenvalues[0]+=e.eigenvalues[0];
eigenvalues[1]+=e.eigenvalues[1];
eigenvalues[2]+=e.eigenvalues[2];
eigenvecs[0]+=e.eigenvecs[0];
eigenvecs[1]+=e.eigenvecs[1];
eigenvecs[2]+=e.eigenvecs[2];
return *this;
}
eigensystem_t operator*=(const double &f) {
eigenvalues[0]*=f;
eigenvalues[1]*=f;
eigenvalues[2]*=f;
eigenvecs[0]*=f;
eigenvecs[1]*=f;
eigenvecs[2]*=f;
return *this;
}
void zero() {
eigenvalues[0]=eigenvalues[1]=eigenvalues[2]=0;
eigenvecs[0]=eigenvecs[1]=eigenvecs[2]=vec(0.,0.,0.);
}
};
/**
* \brief create a uniform random rotation matrix
*
* Euler angles are not good for creating random rotations. This function
* uses a method proposed by Arvo in Graphics Gems to produce uniform
* random rotations.
*/
void RandomRotation();
/**
* \brief calculate eigenvalues and eigenvectors
* @param out struct containing eigenvals + eigenvecs
*/
void SolveEigensystem(eigensystem_t &out);
/**
* \brief transpose the matrix
* @return the matrix after transpose
*
* After this operation, matrix stores the transposed value.
*/matrix &Transpose(){
std::swap( _m[1], _m[3]);
std::swap( _m[2], _m[6]);
std::swap( _m[5], _m[7]);
return *this;
}
/**
* \brief matrix-matrix product
* @param a the matrix to multiply with
* @return multiplied matrix
*/
matrix operator * (const matrix & a){
matrix r;
r._m[0] = _m[0] * a._m[0] + _m[1] * a._m[3] + _m[2] * a._m[6];
r._m[1] = _m[0] * a._m[1] + _m[1] * a._m[4] + _m[2] * a._m[7];
r._m[2] = _m[0] * a._m[2] + _m[1] * a._m[5] + _m[2] * a._m[8];
r._m[3] = _m[3] * a._m[0] + _m[4] * a._m[3] + _m[5] * a._m[6];
r._m[4] = _m[3] * a._m[1] + _m[4] * a._m[4] + _m[5] * a._m[7];
r._m[5] = _m[3] * a._m[2] + _m[4] * a._m[5] + _m[5] * a._m[8];
r._m[6] = _m[6] * a._m[0] + _m[7] * a._m[3] + _m[8] * a._m[6];
r._m[7] = _m[6] * a._m[1] + _m[7] * a._m[4] + _m[8] * a._m[7];
r._m[8] = _m[6] * a._m[2] + _m[7] * a._m[5] + _m[8] * a._m[8];
return r;
}
/**
* \brief matrix-vector product A*x
* @param a vector
* @return A*x
*/
vec operator * ( const vec & a){
return vec( _m[0] * a.getX() + _m[1] * a.getY() + _m[2] * a.getZ(),
_m[3] * a.getX() + _m[4] * a.getY() + _m[5] * a.getZ(),
_m[6] * a.getX() + _m[7] * a.getY() + _m[8] * a.getZ() );
}
friend matrix operator*(const double &, const matrix &);
friend vec operator*(const vec &, const matrix &);
private:
double _m[9];
};
inline matrix &matrix::operator=(const double &v)
{
for(size_t i=0; i<9; ++i)
_m[i] = v;
return *this;
}
inline matrix &matrix::operator=(const matrix &m)
{
for(size_t i=0; i<9; ++i)
_m[i] = m._m[i];
return *this;
}
inline matrix &matrix::operator=(double arr[9])
{
for(size_t i=0; i<9; ++i)
_m[i] = arr[i];
return *this;
}
inline void matrix::UnitMatrix()
{
ZeroMatrix();
_m[0] = _m[4] = _m[8] = 1.0;
}
inline void matrix::ZeroMatrix()
{
for(size_t i=0; i<9; ++i)
_m[i] = 0.;//(*this) = 0.;
}
inline std::ostream &operator<<(std::ostream &out, matrix& m)
{
out << '|' << m[0][0] << ',' << m[0][1] << ',' << m[0][2] << '|' << std::endl;
out << '|' << m[1][0] << ',' << m[1][1] << ',' << m[1][2] << '|' << std::endl;
out << '|' << m[2][0] << ',' << m[2][1] << ',' << m[2][2] << '|' << std::endl;
return out;
}
inline matrix operator|( const vec & a, const vec & b){
matrix res;
res.set(0,0, a.getX() * b.getX());
res.set(0,1, a.getX() * b.getY());
res.set(0,2, a.getX() * b.getZ());
res.set(1,0, a.getY() * b.getX());
res.set(1,1, a.getY() * b.getY());
res.set(1,2, a.getY() * b.getZ());
res.set(2,0, a.getZ() * b.getX());
res.set(2,1, a.getZ() * b.getY());
res.set(2,2, a.getZ() * b.getZ());
return res;
}
inline matrix operator*(const matrix & r, const double &d){
return ( matrix(r) *= d);
}
inline matrix operator*(const double &d, const matrix &m)
{
matrix mm;
for(size_t i=0; i<9; ++i)
mm._m[i] = d*m._m[i];
return mm;
}
inline vec operator*(const matrix & r, const vec &a){
return matrix(r) * a;
}
inline matrix operator/(const matrix & r,const double &d){
return ( matrix(r) /= d);
}
inline matrix operator+(const matrix & r, const matrix & v){
return ( matrix(r) += v);
}
inline matrix operator-(const matrix & r, const matrix & v){
return ( matrix(r) -= v);
}
/* provided the matrix a diagonalizes it and returns the eigenvalues
lambda0 = a[0][0], lambda1 = a[1][1], lambda2= a[2][2], ...
as well as the corresponding eigenvectors v[][0], v[][1], v[][2]
*/
int cjcbi(matrix &a, matrix &v, double eps=1e-10, int jt=100);
}}
#endif /* _matrix_H */
|