/usr/bin/macs2diff is in macs 2.0.9.1-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | #! /usr/bin/python
# Time-stamp: <2011-11-02 14:56:55 Tao Liu>
"""Module Description
Copyright (c) 2011 Tao Liu <taoliu@jimmy.harvard.edu>
This code is free software; you can redistribute it and/or modify it
under the terms of the BSD License (see the file COPYING included with
the distribution).
@status: experimental
@version: $Revision$
@author: Tao Liu
@contact: taoliu@jimmy.harvard.edu
"""
# ------------------------------------
# python modules
# ------------------------------------
import os
import sys
import logging
import multiprocessing
from subprocess import Popen,PIPE
from optparse import OptionParser
import gzip
# from MACS2 libraries
from MACS2.OptValidator import opt_validate_diff
from MACS2.Constants import *
from MACS2.cProb import binomial_cdf_inv
from MACS2.PeakModel import PeakModel,NotEnoughPairsException
from MACS2.cPeakDetect import compare_treatment_vs_control
from MACS2.IO.cBedGraph import scoreTracktoBedGraph
from MACS2.IO.cCompositeScoreTrack import *
# ------------------------------------
# constants
# ------------------------------------
CPUCOUNT = multiprocessing.cpu_count()
# ------------------------------------
# Misc functions
# ------------------------------------
def prepare_optparser ():
"""Prepare optparser object. New options will be added in this
function first.
"""
usage = """usage: %prog <-t1 tfile1> [-c1 cfile1] <-t2 tfile2> [-c2 cfile2] [-n name] [-g genomesize] [options]
Example: %prog --t1 CTCF_GM12878.bam --c1 Control_GM12878.bam --t2 CTCF_K562.bam --c2 Control_K562.bam -g hs -n testdiff -B -q 0.01
"""
description = "%prog -- Differential Analysis for ChIP-Sequencing"
optparser = OptionParser(version="%prog "+MACSDIFF_VERSION,description=description,usage=usage,add_help_option=False)
optparser.add_option("-h","--help",action="help",help="show this help message and exit.")
optparser.add_option("--t1",dest="tfile1",type="string",
help="ChIP-seq treatment file for the first condition. REQUIRED.")
optparser.add_option("--c1",dest="cfile1",type="string",
help="Control file for the first condition. If c1 is missing while c2 is specified, t1 will be paired with c2. At least one of c1 or c2 should be available.")
optparser.add_option("--t2",dest="tfile2",type="string",
help="ChIP-seq treatment file for the second condition. REQUIRED")
optparser.add_option("--c2",dest="cfile2",type="string",
help="Control file for the second condition. If c2 is missing while c1 is specified, t2 will be paired with c1. At least one of c1 or c2 should be available.")
optparser.add_option("-n","--name",dest="name",type="string",
help="Analysis name, which will be used to generate output file names. DEFAULT: \"NA\"",
default="NA")
optparser.add_option("-f","--format",dest="format",type="string",
help="Format of tag file, \"AUTO\", \"BED\" or \"ELAND\" or \"ELANDMULTI\" or \"ELANDEXPORT\" or \"SAM\" or \"BAM\" or \"BOWTIE\". The default AUTO option will let MACS decide which format the file is. Please check the definition in 00README file if you choose ELAND/ELANDMULTI/ELANDEXPORT/SAM/BAM/BOWTIE. DEFAULT: \"AUTO\"",
default="AUTO")
optparser.add_option("-g","--gsize",dest="gsize",type="string",default="hs",
help="Effective genome size. It can be 1.0e+9 or 1000000000, or shortcuts:'hs' for human (2.7e9), 'mm' for mouse (1.87e9), 'ce' for C. elegans (9e7) and 'dm' for fruitfly (1.2e8), Default:hs")
optparser.add_option("-s","--tsize",dest="tsize",type="int",default=None,
help="Tag size. This will overide the auto detected tag size. DEFAULT: Not set")
optparser.add_option("--bw",dest="bw",type="int",default=300,
help="Band width. This value is only used while building the shifting model. DEFAULT: 300")
optparser.add_option("-q","--qvalue",dest="qvalue",type="float",default=0.01,
help="Minimum FDR (q-value) cutoff for peak detection. DEFAULT: 0.01 ")
optparser.add_option("-p","--pvalue",dest="pvalue",type="float",
help="Pvalue cutoff for peak detection. When set (e.g. -q 0.05 or -q 1e-5), qvalue cutoff will be ignored. Default is not set.")
optparser.add_option("-m","--mfold",dest="mfold",type="string",default="10,30",
help="Select the regions within MFOLD range of high-confidence enrichment ratio against background to build model. The regions must be lower than upper limit, and higher than the lower limit. DEFAULT:10,30")
optparser.add_option("--nolambda",dest="nolambda",action="store_true",
help="If True, MACS will use fixed background lambda as local lambda for every peak region. Normally, MACS calculates a dynamic local lambda to reflect the local bias due to potential chromatin structure. ",
default=False)
optparser.add_option("--slocal",dest="smalllocal",type="int",default=1000,
help="The small nearby region in basepairs to calculate dynamic lambda. This is used to capture the bias near the peak summit region. Invalid if there is no control data. If you set this to 0, MACS will skip slocal lambda calculation. *Note* that MACS will always perform a d-size local lambda calculation. The final local bias should be the maximum of the lambda value from d, slocal, and llocal size windows. DEFAULT: 1000 ")
optparser.add_option("--llocal",dest="largelocal",type="int",default=10000,
help="The large nearby region in basepairs to calculate dynamic lambda. This is used to capture the surround bias. If you set this to 0, MACS will skip llocal lambda calculation. *Note* that MACS will always perform a d-size local lambda calculation. The final local bias should be the maximum of the lambda value from d, slocal, and llocal size windows. DEFAULT: 10000.")
optparser.add_option("--auto-bimodal",dest="onauto",action="store_true",
help="Whether turn on the auto pair model process. If set, when MACS failed to build paired model, it will use the nomodel settings, the '--shiftsize' parameter to shift and extend each tags. Not to use this automate fixation is a default behavior now. DEFAULT: False",
default=False)
optparser.add_option("--nomodel",dest="nomodel",action="store_true",
help="Whether or not to build the shifting model. If True, MACS will not build model. by default it means shifting size = 100, try to set shiftsize to change it. DEFAULT: False",
default=False)
optparser.add_option("--shiftsize",dest="shiftsize",type="int",default=100,
help="The arbitrary shift size in bp. When nomodel is true, MACS will use this value as 1/2 of fragment size. DEFAULT: 100 ")
optparser.add_option("--keep-dup",dest="keepduplicates",type="string",default="auto",
help="It controls the MACS behavior towards duplicate tags at the exact same location -- the same coordination and the same strand. The default 'auto' option makes MACS calculate the maximum tags at the exact same location based on binomal distribution using 1e-5 as pvalue cutoff; and the 'all' option keeps every tags. If an integer is given, at most this number of tags will be kept at the same location. Default: auto")
optparser.add_option("-B","--bdg",dest="store_bdg",action="store_true",
help="Whether or not to save p/qvalue (depending on whether pvalue or qvalue is used) score tracks at every bp into a bedGraph file. DEFAULT: False",
default=False)
optparser.add_option("--minlen",dest="minlen",type="int",
help="The minimum length for differential calling. By default, it will be decided as the middle of fragment sizes of treatment 1 andtreatment 2. Must be an integar larger than 0.")
optparser.add_option("-a",dest="nprocesses",type="int",default=1,
help="Number of CPUs MACS can use, upto 4. DEFAULT: 1 ")
optparser.add_option("--verbose",dest="verbose",type="int",default=2,
help="Set verbose level. 0: only show critical message, 1: show additional warning message, 2: show process information, 3: show debug messages. DEFAULT:2")
return optparser
def cal_max_dup_tags ( genome_size, tags_number, p=1e-5 ):
"""Calculate the maximum duplicated tag number based on genome
size, total tag number and a p-value based on binomial
distribution. Brute force algorithm to calculate reverse CDF no
more than MAX_LAMBDA(100000).
"""
return binomial_cdf_inv(1-p,tags_number,1.0/genome_size)
def load_tag_files_options ( options ):
"""From the options, load treatment tags and control tags (if available).
"""
options.info("#1 read treatment files...")
tp1 = options.parser(open2(options.tfile1))
tp2 = options.parser(open2(options.tfile2))
if not options.tsize: # override tsize if user specified --tsize
ttsize = tp1.tsize()
options.tsize = ttsize
options.info("#1 read treatment file for condition 1...")
treat1 = tp1.build_fwtrack()
options.info("#1 read treatment file for condition 2...")
treat2 = tp2.build_fwtrack()
treat1.sort()
treat2.sort()
if options.cfile1:
options.info("#1.2 read input control files...")
options.info("#1 read control file for condition 1...")
control1 = options.parser(open2(options.cfile1)).build_fwtrack()
control1.sort()
if options.cfile2 == options.cfile1:
control2 = control1
else:
options.info("#1 read control file for condition 2...")
control2 = options.parser(open2(options.cfile2)).build_fwtrack()
control2.sort()
else:
control1 = None
control2 = None
options.info("#1 tag size is determined as %d bps" % options.tsize)
return ( treat1, control1, treat2, control2 )
def open2(path, mode='r', bufsize=-1):
# try gzip first
f = gzip.open(path, mode)
try:
f.read(10)
except IOError:
# not a gzipped file
f.close()
f = open(path, mode, bufsize)
else:
f.seek(0)
return f
def remove_duplicates ( taskoptions):
(name, fwtrack_obj, options) = taskoptions
t0 = fwtrack_obj.total
tagsinfo = "# total tags in %s: %d\n" % ( name, t0 )
if options.keepduplicates != "all":
if options.keepduplicates == "auto":
#info( "#1 calculate max duplicate tags in single position based on binomial distribution..." )
max_dup_tags = cal_max_dup_tags( options.gsize, t0 )
#info( "#1 max_dup_tags based on binomal = %d" % ( max_dup_tags ) )
#info( "#1 filter out redundant tags at the same location and the same strand by allowing at most %d tag(s)" % ( max_dup_tags ) )
else:
#info( "#1 user defined the maximum tags..." )
max_dup_tags = int( options.keepduplicates )
#info( "#1 filter out redundant tags at the same location and the same strand by allowing at most %d tag(s)" % ( max_dup_tags ) )
fwtrack_obj.filter_dup( max_dup_tags )
t1 = fwtrack_obj.total
#info("#1 tags after filtering in %s: %d" % ( name, t1 ) )
tagsinfo += "# tags after filtering in %s: %d\n" % ( name, t1 )
tagsinfo += "# maximum duplicate tags at the same position in %s = %d\n" % ( name, max_dup_tags )
#info("#1 Redundant rate of %s: %.2f" % ( name, float(t0-t1)/t0) )
tagsinfo += "# Redundant rate in %s: %.2f\n" % ( name, float( t0-t1 )/t0 )
return tagsinfo
def macs2pqvalues ( task_options ):
( name, treat, control, diff_options, slocal, llocal, tocontrol, shiftcontrol ) = task_options
if diff_options.nomodel:
d = diff_options.shiftsize * 2
else:
try:
peakmodel = PeakModel(treatment = treat,
max_pairnum = MAX_PAIRNUM,
opt = diff_options,
quiet = True,
)
d = peakmodel.d
if diff_options.onauto and d <= 2 * diff_options.tsize:
d = diff_options.shiftsize * 2
except NotEnoughPairsException:
if not diff_options.onauto:
sys.exit(1)
d = diff_options.shiftsize * 2
diff_options.halfext = False
scoretrack = compare_treatment_vs_control ( treat, control, d, diff_options.gsize,
halfext=False, slocal=slocal, llocal=llocal,
tocontrol=tocontrol, shiftcontrol=shiftcontrol )
if diff_options.log_qvalue:
bdgtrack = scoreTracktoBedGraph( scoretrack, colname='-100logq' )
elif diff_options.log_pvalue:
bdgtrack = scoreTracktoBedGraph( scoretrack, colname='-100logp' )
else:
raise Exception("p or q value cutoff not set?!")
scoretrack = None
return (bdgtrack,d)
# ------------------------------------
# Classes
# ------------------------------------
# ------------------------------------
# Main function
# ------------------------------------
def main():
# Parse options...
options = opt_validate_diff( prepare_optparser() )
# end of parsing commandline options
info = options.info
warn = options.warn
debug = options.debug
error = options.error
#0 output arguments
info( "macs2diff start\n\n" + options.argtxt )
if options.nprocesses > CPUCOUNT:
warn( "-a is larger than actual CPU counts, will cap it with %d" % CPUCOUNT )
options.nprocesses = CPUCOUNT
if options.nprocesses > 4:
warn( "Maximum 4 CPUs can be used!" )
options.nprocesses = 4
#1 Read
( treat1, control1, treat2, control2 ) = load_tag_files_options( options )
#2 Remove duplicates
info( "#2 Remove duplicates..." )
pool = multiprocessing.Pool(options.nprocesses)
tasks = [('treatment1', treat1, options), ('treatment2', treat2, options), ('control1', control1, options) ]
if control1 != control2:
tasks.append( ('control2', control2, options) )
results = pool.map(remove_duplicates, tasks)
pool.close()
pool.join()
info( "#2 Summary of duplicates removing:\n\n%s " % "".join(results) )
#3 Build Model
info("#3 do 4-way comparisons ...")
pool = multiprocessing.Pool(options.nprocesses)
# I wish to do something correct... When t1 and t2 have different
# sequencing depth, the direction of the scaling is very
# tricky. At least, we should keep the direction the same while
# comparing t1 vs t2 or t2 vs t1. It means, to always scale t1 to
# t2 or t2 to t1. To be safe (specific), we scale larger dataset
# to smaller one.
if treat1.total > treat2.total:
tocontrol1 = True # tocontrol1: whether scale t1 to t2
tocontrol2 = False # tocontrol1: whether scale t2 to t1
else:
tocontrol1 = False
tocontrol2 = True
# extra parameters passed to macs2run are 1) slocal, 2) llocal, 3)
# whether or not scale 'treatment' towards 'control', 4) whether
# or not 'shift control';
tasks = [ ('t1c1', treat1, control1, options, options.smalllocal, options.largelocal, False, False),
('t2c2', treat2, control2, options, options.smalllocal, options.largelocal, False, False),
('t1t2', treat1, treat2, options, 0, 0, tocontrol1, True),
('t2t1', treat2, treat1, options, 0, 0, tocontrol2, True) ]
results = pool.map( macs2pqvalues, tasks )
pool.close()
pool.join()
( (t1c1,d1),(t2c2,d2),(t1t2,d3),(t2t1,d4) ) = results
#print results
info("#3 4-way comparisons done!")
info("#3 Fragment size for treatment 1 is %s bps" % d1)
info("#3 Fragment size for treatment 2 is %s bps" % d2)
if not options.minlen:
minlen = int((d1+d2)/2)
info("#3 The middle value of above two fragment sizes will be used as minimum length in differenial calling: %s bps" % minlen)
else:
minlen = max(1,options.minlen)
info("#3 User specified minimum length for differential calling" % minlen)
if options.store_bdg:
info("#3 save score to bedGraph files")
if options.log_qvalue:
info("#3 saving qvalues")
t1c1.write_bedGraph(open("%s_t1c1_qvalue.bdg" % options.name,"w"),
name="%s t1c1 qvalue" % options.name,
description="%s qvalues calculated by comparing treatment1 and control1" % options.name)
t2c2.write_bedGraph(open("%s_t2c2_qvalue.bdg" % options.name,"w"),
name="%s t2c2 qvalue" % options.name,
description="%s qvalues calculated by comparing treatment2 and control2" % options.name)
t1t2.write_bedGraph(open("%s_t1t2_qvalue.bdg" % options.name,"w"),
name="%s t1t2 qvalue" % options.name,
description="%s qvalues calculated by comparing treatment1 and treatment2" % options.name)
t2t1.write_bedGraph(open("%s_t2t1_qvalue.bdg" % options.name,"w"),
name="%s t2t1 qvalue" % options.name,
description="%s qvalues calculated by comparing treatment2 and treatment1" % options.name)
elif options.log_pvalue:
info("#3 saving pvalues")
t1c1.write_bedGraph(open("%s_t1c1_pvalue.bdg" % options.name,"w"),
name="%s t1c1 pvalue" % options.name,
description="%s pvalues calculated by comparing treatment1 and control1" % options.name)
t2c2.write_bedGraph(open("%s_t2c2_pvalue.bdg" % options.name,"w"),
name="%s t2c2 pvalue" % options.name,
description="%s pvalues calculated by comparing treatment2 and control2" % options.name)
t1t2.write_bedGraph(open("%s_t1t2_pvalue.bdg" % options.name,"w"),
name="%s t1t2 pvalue" % options.name,
description="%s pvalues calculated by comparing treatment1 and treatment2" % options.name)
t2t1.write_bedGraph(open("%s_t2t1_pvalue.bdg" % options.name,"w"),
name="%s t2t1 pvalue" % options.name,
description="%s pvalues calculated by comparing treatment2 and treatment1" % options.name)
else:
raise Exception("p or q value cutoff not set?!")
info("#3 Please check the *.bdg files in the same directory!")
#4 Call differential peaks
info("#4 Combine four score tracks...")
comp_btrack = make_compositeScoreTrack( t1c1,t2c2,t1t2,t2t1 )
info("#4 Call differential regions ...")
if options.log_qvalue:
cutoff = options.log_qvalue
elif options.log_pvalue:
cutoff = options.log_pvalue
else:
raise Exception("p or q value cutoff not set?!")
( consistent_peaks, condition1_peaks, condition2_peaks ) = comp_btrack.call_diff_regions(cutoff=cutoff,min_length=minlen,max_gap=options.tsize)
info("#4 Write peaks...")
consistent_f = open ( options.consistent_peakbed, "w" )
condition1_f = open ( options.condition1_peakbed, "w" )
condition2_f = open ( options.condition2_peakbed, "w" )
consistent_peaks.write_to_bed(consistent_f,name_prefix="consistent_site_", score_column="score")
condition1_peaks.write_to_bed(condition1_f,name_prefix="condition1_unique_site_", score_column="score")
condition2_peaks.write_to_bed(condition2_f,name_prefix="condition2_unique_site_", score_column="score")
info("#4 Summary\n\nConsistent sites: %d\nCondition1 unique sites: %d\nCondition2 unique sites: %d\n" % (consistent_peaks.total(), condition1_peaks.total(), condition2_peaks.total() ))
info("#4 Done")
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
sys.stderr.write("User interrupt me! ;-) See you!\n")
sys.exit(0)
|