This file is indexed.

/usr/lib/ocaml/complex.ml is in ocaml-nox 4.01.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 2002 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

(* Complex numbers *)

type t = { re: float; im: float }

let zero = { re = 0.0; im = 0.0 }
let one = { re = 1.0; im = 0.0 }
let i = { re = 0.0; im = 1.0 }

let add x y = { re = x.re +. y.re; im = x.im +. y.im }

let sub x y = { re = x.re -. y.re; im = x.im -. y.im }

let neg x = { re = -. x.re; im = -. x.im }

let conj x = { re = x.re; im = -. x.im }

let mul x y = { re = x.re *. y.re -. x.im *. y.im;
                im = x.re *. y.im +. x.im *. y.re }

let div x y =
  if abs_float y.re >= abs_float y.im then
    let r = y.im /. y.re in
    let d = y.re +. r *. y.im in
    { re = (x.re +. r *. x.im) /. d;
      im = (x.im -. r *. x.re) /. d }
  else
    let r = y.re /. y.im in
    let d = y.im +. r *. y.re in
    { re = (r *. x.re +. x.im) /. d;
      im = (r *. x.im -. x.re) /. d }

let inv x = div one x

let norm2 x = x.re *. x.re +. x.im *. x.im

let norm x =
  (* Watch out for overflow in computing re^2 + im^2 *)
  let r = abs_float x.re and i = abs_float x.im in
  if r = 0.0 then i
  else if i = 0.0 then r
  else if r >= i then
    let q = i /. r in r *. sqrt(1.0 +. q *. q)
  else
    let q = r /. i in i *. sqrt(1.0 +. q *. q)

let arg x = atan2 x.im x.re

let polar n a = { re = cos a *. n; im = sin a *. n }

let sqrt x =
  if x.re = 0.0 && x.im = 0.0 then { re = 0.0; im = 0.0 }
  else begin
    let r = abs_float x.re and i = abs_float x.im in
    let w =
      if r >= i then begin
        let q = i /. r in
        sqrt(r) *. sqrt(0.5 *. (1.0 +. sqrt(1.0 +. q *. q)))
      end else begin
        let q = r /. i in
        sqrt(i) *. sqrt(0.5 *. (q +. sqrt(1.0 +. q *. q)))
      end in
    if x.re >= 0.0
    then { re = w;  im = 0.5 *. x.im /. w }
    else { re = 0.5 *. i /. w;  im = if x.im >= 0.0 then w else -. w }
  end

let exp x =
  let e = exp x.re in { re = e *. cos x.im; im = e *. sin x.im }

let log x = { re = log (norm x); im = atan2 x.im x.re }

let pow x y = exp (mul y (log x))