/usr/share/octave/packages/image-2.2.2/im2col.m is in octave-image 2.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | ## Copyright (C) 2013 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} im2col (@var{A}, @var{block_size})
## @deftypefnx {Function File} {} im2col (@var{A}, @var{block_size}, @var{block_type})
## @deftypefnx {Function File} {} im2col (@var{A}, "indexed", @dots{})
## Rearrange blocks from matrix into columns.
##
## Rearranges blocks of size @var{block_size}, sampled from the matrix @var{A},
## into a serie of columns. This effectively transforms any image into a
## 2 dimensional matrix, a block per column, which can then be passed to
## other functions that perform calculations along columns.
##
## Both blocks and matrix @var{A} can have any number of dimensions (though
## for sliding blocks, a block can't be larger than @var{A} in any dimension).
## Blocks are always accessed in column-major order (like Octave arrays are
## stored) so that a matrix can be easily reconstructed with @code{reshape}
## and @code{col2im}. For a 2 dimensional matrix, blocks are taken first from
## the top to the bottom, and then from the left to the right of the matrix.
##
## The sampling can be performed in two different ways as defined by
## @var{block_type} (defaults to @qcode{"sliding"}):
##
## @table @asis
## @item @qcode{"distinct"}
## Each block is completely distinct from the other, with no overlapping
## elements. The matrix @var{A} is padded as required with a value of 0
## (or 1 for non-integer indexed images).
##
## @item @qcode{"sliding"}
## A single block slides across @var{A} without any padding.
##
## While this can be used to perform sliding window operations such as maximum
## and median filters, specialized functions such as @code{imdilate} and
## @code{medfilt2} will be more efficient.
##
## Note that large images being arranged in large blocks can easily exceed the
## maximum matrix size (see @code{sizemax}). For example, a matrix @var{A} of
## size 500x500, with sliding block of size [100 100], would require a matrix
## with 2.4108e+09 elements, i.e., the number of elements in a block,
## @code{100*100}, times the number of blocks, @code{(500-10+1) * (500-10+1)}.
##
## @end table
##
## If @var{A} is an indexed image, the second argument should be the
## string @qcode{"indexed"} so that any required padding is done correctly.
## The padding value will be 0 except for indexed images of class uint8
## and uint16.
##
## @seealso{blockproc, bestblk, col2im, colfilt, nlfilter, reshape}
## @end deftypefn
## Matlab behaves weird with N-dimensional images. It ignores block_size
## elements after the first 2, and treat N-dimensional as if the extra
## dimensions were concatenated horizontally. We are performing real
## N-dimensional conversion of image blocks into colums.
function B = im2col (A, varargin)
## Input check
if (nargin > 4)
print_usage ();
endif
[p, block_size, padval] = im2col_check ("im2col", nargin, A, varargin{:});
if (nargin > p)
## we have block_type param
if (! ischar (varargin{p}))
error("im2col: BLOCK_TYPE must be a string");
endif
block_type = varargin{p++};
else
block_type = "sliding";
endif
if (nargin > p)
print_usage ();
endif
## After all the input check, start the actual im2col. The idea is to
## calculate the linear indices for each of the blocks (using broadcasting
## for each dimension), and then reshape it with one block per column.
warning ("off", "Octave:broadcast", "local");
switch (tolower (block_type))
case "distinct"
## We may need to expand the size vector to include singletons
size_singletons = @(x, ndim) postpad (size (x), ndim, 1);
## Calculate needed padding
A_size = size_singletons (A, numel (block_size));
sp = mod (-A_size, block_size);
if (any (sp))
A = padarray (A, sp, padval, "post");
endif
A_size = size_singletons (A, numel (block_size));
## Get linear indixes for the first block
[ind, stride] = get_1st_ind (A_size, block_size);
## Get linear indices for all of the blocks
blocks = A_size ./ block_size;
step = stride .* block_size;
limit = step .* (blocks -1);
for dim = 1:numel (A_size)
ind = ind(:) .+ (0:step(dim):limit(dim));
endfor
n_blocks = prod (blocks);
case "sliding"
if (numel (block_size) > ndims (A))
error ("im2col: BLOCK_SIZE can't have more elements than the dimensions of A");
elseif (any (size (A) < block_size))
error("im2col: no dimension of A can be greater than BLOCK_SIZE in sliding");
endif
## Get linear indixes for the first block
[ind, stride] = get_1st_ind (size (A), block_size);
## Get linear indices for all of the blocks
slides = size (A) - block_size;
limit = stride .* slides;
for dim = 1:ndims (A)
ind = ind(:) .+ (0:stride(dim):limit(dim));
endfor
n_blocks = prod (slides +1);
otherwise
error ("im2col: invalid BLOCK_TYPE `%s'.", block_type);
endswitch
B = reshape (A(ind(:)), prod (block_size), n_blocks);
endfunction
## Get linear indices and for the first block, and stride size per dimension
function [ind, stride] = get_1st_ind (A_size, block_size)
stride = [1 cumprod(A_size(1:end-1))];
limit = (block_size -1) .* stride;
ind = 1;
for dim = 1:numel (A_size)
ind = ind(:) .+ (0:stride(dim):limit(dim));
endfor
endfunction
%!demo
%! ## Divide A using distinct blocks and then reverse the operation
%! A = [ 1:10
%! 11:20
%! 21:30
%! 31:40];
%! B = im2col (A, [2 5], "distinct")
%! C = col2im (B, [2 5], [4 10], "distinct")
## test default block type
%!test
%! a = rand (10);
%! assert (im2col (a, [5 5]), im2col (a, [5 5], "sliding"))
## indexed makes no difference when sliding
%!test
%! a = rand (10);
%! assert (im2col (a, [5 5]), im2col (a, "indexed", [5 5]))
%!error <BLOCK_TYPE> im2col (rand (20), [2 5], 10)
%!error <BLOCK_TYPE> im2col (rand (20), [2 5], "wrong_block_type")
%!error <greater than> im2col (rand (10), [11 5], "sliding")
%!error im2col (rand (10), [5 5], "sliding", 5)
%!error im2col (rand (10), "indexed", [5 5], "sliding", 5)
%!shared B, A, Bs, As, Ap, Bp0, Bp1, Bp0_3s
%! v = [1:10]';
%! r = reshape (v, 2, 5);
%! B = [v v+20 v+40 v+10 v+30 v+50];
%! A = [r r+10; r+20 r+30; r+40 r+50];
%! As = [ 1 2 3 4 5
%! 6 7 8 9 10
%! 11 12 13 14 15];
%! b1 = As(1:2, 1:4)(:);
%! b2 = As(2:3, 1:4)(:);
%! b3 = As(1:2, 2:5)(:);
%! b4 = As(2:3, 2:5)(:);
%! Bs = [b1, b2, b3, b4];
%! Ap = A(:, 1:9);
%! Bp1 = Bp0 = B;
%! Bp0(9:10, 4:6) = 0;
%! Bp1(9:10, 4:6) = 1;
%! Bp0_3s = Bp0;
%! Bp0_3s(11:30, :) = 0;
## test distinct block type
%!assert (im2col (A, [2 5], "distinct"), B);
## padding for distinct
%!assert (im2col (Ap, [2 5], "distinct"), Bp0);
%!assert (im2col (Ap, [2 5 3], "distinct"), Bp0_3s);
%!assert (im2col (Ap, "indexed", [2 5], "distinct"), Bp1);
%!assert (im2col (uint8 (Ap), "indexed", [2 5], "distinct"), uint8 (Bp0));
%!assert (im2col (uint16 (Ap), "indexed", [2 5], "distinct"), uint16 (Bp0));
%!assert (im2col (int16 (Ap), "indexed", [2 5], "distinct"), int16 (Bp1));
%!assert (im2col (uint32 (Ap), "indexed", [2 5], "distinct"), uint32 (Bp1));
## Always return correct class
%!assert (im2col (uint8 (A), [2 5], "distinct"), uint8 (B));
%!assert (im2col (single (A), [2 5], "distinct"), single (B));
%!assert (im2col (logical (A), [2 5], "distinct"), logical (B));
%!assert (im2col (uint8 (As), [2 4], "sliding"), uint8 (Bs));
%!assert (im2col (single (As), [2 4], "sliding"), single (Bs));
%!assert (im2col (logical (As), [2 4], "sliding"), logical (Bs));
## test sliding block type
%!assert (im2col (As, [2 4], "sliding"), Bs);
%!assert (im2col (As, [3 5], "sliding"), As(:));
## Test N-dimensional
%!test
%! A = randi (9, 10, 9, 5);
%!assert (convn (A, ones (3, 3, 3), "valid"),
%! reshape (sum (im2col (A, [3 3 3])), [8 7 3]));
%!
%! A = randi (9, 10, 9, 5, 7);
%!assert (convn (A, ones (3, 3, 3), "valid"),
%! reshape (sum (im2col (A, [3 3 3])), [8 7 3 7]));
%!assert (convn (A, ones (3, 4, 3), "valid"),
%! reshape (sum (im2col (A, [3 4 3])), [8 6 3 7]));
%!assert (convn (A, ones (3, 5, 3, 2), "valid"),
%! reshape (sum (im2col (A, [3 5 3 2])), [8 5 3 6]));
|