/usr/share/octave/packages/image-2.2.2/imsmooth.m is in octave-image 2.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | ## Copyright (C) 2007 Søren Hauberg <soren@hauberg.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} @var{J} = imsmooth(@var{I}, @var{name}, @var{options})
## Smooth the given image using several different algorithms.
##
## The first input argument @var{I} is the image to be smoothed. If it is an RGB
## image, each color plane is treated separately.
## The variable @var{name} must be a string that determines which algorithm will
## be used in the smoothing. It can be any of the following strings
##
## @table @asis
## @item "Gaussian"
## Isotropic Gaussian smoothing. This is the default.
## @item "Average"
## Smoothing using a rectangular averaging linear filter.
## @item "Disk"
## Smoothing using a circular averaging linear filter.
## @item "Median"
## Median filtering.
## @item "Bilateral"
## Gaussian bilateral filtering.
## @item "Perona & Malik"
## @itemx "Perona and Malik"
## @itemx "P&M"
## Smoothing using nonlinear isotropic diffusion as described by Perona and Malik.
## @item "Custom Gaussian"
## Gaussian smoothing with a spatially varying covariance matrix.
## @end table
##
## In all algorithms the computation is done in double precision floating point
## numbers, but the result has the same type as the input. Also, the size of the
## smoothed image is the same as the input image.
##
## @strong{Isotropic Gaussian smoothing}
##
## The image is convolved with a Gaussian filter with spread @var{sigma}.
## By default @var{sigma} is @math{0.5}, but this can be changed. If the third
## input argument is a scalar it is used as the filter spread.
##
## The image is extrapolated symmetrically before the convolution operation.
##
## @strong{Rectangular averaging linear filter}
##
## The image is convolved with @var{N} by @var{M} rectangular averaging filter.
## By default a 3 by 3 filter is used, but this can e changed. If the third
## input argument is a scalar @var{N} a @var{N} by @var{N} filter is used. If the third
## input argument is a two-vector @code{[@var{N}, @var{M}]} a @var{N} by @var{M}
## filter is used.
##
## The image is extrapolated symmetrically before the convolution operation.
##
## @strong{Circular averaging linear filter}
##
## The image is convolved with circular averaging filter. By default the filter
## has a radius of 5, but this can e changed. If the third input argument is a
## scalar @var{r} the radius will be @var{r}.
##
## The image is extrapolated symmetrically before the convolution operation.
##
## @strong{Median filtering}
##
## Each pixel is replaced with the median of the pixels in the local area. By
## default, this area is 3 by 3, but this can be changed. If the third input
## argument is a scalar @var{N} the area will be @var{N} by @var{N}, and if it's
## a two-vector [@var{N}, @var{M}] the area will be @var{N} by @var{M}.
##
## The image is extrapolated symmetrically before the filtering is performed.
##
## @strong{Gaussian bilateral filtering}
##
## The image is smoothed using Gaussian bilateral filtering as described by
## Tomasi and Manduchi [2]. The filtering result is computed as
## @example
## @var{J}(x0, y0) = k * SUM SUM @var{I}(x,y) * w(x, y, x0, y0, @var{I}(x0,y0), @var{I}(x,y))
## x y
## @end example
## where @code{k} a normalisation variable, and
## @example
## w(x, y, x0, y0, @var{I}(x0,y0), @var{I}(x,y))
## = exp(-0.5*d([x0,y0],[x,y])^2/@var{sigma_d}^2)
## * exp(-0.5*d(@var{I}(x0,y0),@var{I}(x,y))^2/@var{sigma_r}^2),
## @end example
## with @code{d} being the Euclidian distance function. The two paramteres
## @var{sigma_d} and @var{sigma_r} control the amount of smoothing. @var{sigma_d}
## is the size of the spatial smoothing filter, while @var{sigma_r} is the size
## of the range filter. When @var{sigma_r} is large the filter behaves almost
## like the isotropic Gaussian filter with spread @var{sigma_d}, and when it is
## small edges are preserved better. By default @var{sigma_d} is 2, and @var{sigma_r}
## is @math{10/255} for floating points images (with integer images this is
## multiplied with the maximal possible value representable by the integer class).
##
## The image is extrapolated symmetrically before the filtering is performed.
##
## @strong{Perona and Malik}
##
## The image is smoothed using nonlinear isotropic diffusion as described by Perona and
## Malik [1]. The algorithm iteratively updates the image using
##
## @example
## I += lambda * (g(dN).*dN + g(dS).*dS + g(dE).*dE + g(dW).*dW)
## @end example
##
## @noindent
## where @code{dN} is the spatial derivative of the image in the North direction,
## and so forth. The function @var{g} determines the behaviour of the diffusion.
## If @math{g(x) = 1} this is standard isotropic diffusion.
##
## The above update equation is repeated @var{iter} times, which by default is 10
## times. If the third input argument is a positive scalar, that number of updates
## will be performed.
##
## The update parameter @var{lambda} affects how much smoothing happens in each
## iteration. The algorithm can only be proved stable is @var{lambda} is between
## 0 and 0.25, and by default it is 0.25. If the fourth input argument is given
## this parameter can be changed.
##
## The function @var{g} in the update equation determines the type of the result.
## By default @code{@var{g}(@var{d}) = exp(-(@var{d}./@var{K}).^2)} where @var{K} = 25.
## This choice gives privileges to high-contrast edges over low-contrast ones.
## An alternative is to set @code{@var{g}(@var{d}) = 1./(1 + (@var{d}./@var{K}).^2)},
## which gives privileges to wide regions over smaller ones. The choice of @var{g}
## can be controlled through the fifth input argument. If it is the string
## @code{"method1"}, the first mentioned function is used, and if it is @var{"method2"}
## the second one is used. The argument can also be a function handle, in which case
## the given function is used. It should be noted that for stability reasons,
## @var{g} should return values between 0 and 1.
##
## The following example shows how to set
## @code{@var{g}(@var{d}) = exp(-(@var{d}./@var{K}).^2)} where @var{K} = 50.
## The update will be repeated 25 times, with @var{lambda} = 0.25.
##
## @example
## @var{g} = @@(@var{d}) exp(-(@var{d}./50).^2);
## @var{J} = imsmooth(@var{I}, "p&m", 25, 0.25, @var{g});
## @end example
##
## @strong{Custom Gaussian Smoothing}
##
## The image is smoothed using a Gaussian filter with a spatially varying covariance
## matrix. The third and fourth input arguments contain the Eigenvalues of the
## covariance matrix, while the fifth contains the rotation of the Gaussian.
## These arguments can be matrices of the same size as the input image, or scalars.
## In the last case the scalar is used in all pixels. If the rotation is not given
## it defaults to zero.
##
## The following example shows how to increase the size of an Gaussian
## filter, such that it is small near the upper right corner of the image, and
## large near the lower left corner.
##
## @example
## [@var{lambda1}, @var{lambda2}] = meshgrid (linspace (0, 25, columns (@var{I})), linspace (0, 25, rows (@var{I})));
## @var{J} = imsmooth (@var{I}, "Custom Gaussian", @var{lambda1}, @var{lambda2});
## @end example
##
## The implementation uses an elliptic filter, where only neighbouring pixels
## with a Mahalanobis' distance to the current pixel that is less than 3 are
## used to compute the response. The response is computed using double precision
## floating points, but the result is of the same class as the input image.
##
## @strong{References}
##
## [1] P. Perona and J. Malik,
## "Scale-space and edge detection using anisotropic diffusion",
## IEEE Transactions on Pattern Analysis and Machine Intelligence,
## 12(7):629-639, 1990.
##
## [2] C. Tomasi and R. Manduchi,
## "Bilateral Filtering for Gray and Color Images",
## Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India.
##
## @seealso{imfilter, fspecial}
## @end deftypefn
## TODO: Implement Joachim Weickert's anisotropic diffusion (it's soo cool)
function J = imsmooth(I, name = "Gaussian", varargin)
## Check inputs
if (nargin == 0)
print_usage();
endif
if (!ismatrix(I))
error("imsmooth: first input argument must be an image");
endif
[imrows, imcols, imchannels, tmp] = size(I);
if ((imchannels != 1 && imchannels != 3) || tmp != 1)
error("imsmooth: first input argument must be an image");
endif
if (nargin == 2 && isscalar (name))
varargin {1} = name;
name = "Gaussian";
endif
if (!ischar(name))
error("imsmooth: second input must be a string");
endif
len = length(varargin);
## Save information for later
C = class(I);
## Take action depending on 'name'
switch (lower(name))
##############################
### Gaussian smoothing ###
##############################
case "gaussian"
## Check input
s = 0.5;
if (len > 0)
if (isscalar(varargin{1}) && varargin{1} > 0)
s = varargin{1};
else
error("imsmooth: third input argument must be a positive scalar when performing Gaussian smoothing");
endif
endif
## Compute filter
h = ceil(3*s);
f = exp( (-(-h:h).^2)./(2*s^2) ); f /= sum(f);
## Pad image
I = double (padarray (I, [h h], "symmetric"));
## Perform the filtering
for i = imchannels:-1:1
J(:,:,i) = conv2(f, f, I(:,:,i), "valid");
endfor
############################
### Square averaging ###
############################
case "average"
## Check input
s = [3, 3];
if (len > 0)
if (isscalar(varargin{1}) && varargin{1} > 0)
s = [varargin{1}, varargin{1}];
elseif (isvector(varargin{1}) && length(varargin{1}) == 2 && all(varargin{1} > 0))
s = varargin{1};
else
error("imsmooth: third input argument must be a positive scalar or two-vector when performing averaging");
endif
endif
## Compute filter
f2 = ones(1,s(1))/s(1);
f1 = ones(1,s(2))/s(2);
## Pad image
I = padarray (I, floor ( [s(1) s(2)] /2), "symmetric", "pre");
I = padarray (I, floor (([s(1) s(2)]-1)/2), "symmetric", "post");
I = double (I);
## Perform the filtering
for i = imchannels:-1:1
J(:,:,i) = conv2 (f1, f2, I(:,:,i), "valid");
endfor
##############################
### Circular averaging ###
##############################
case "disk"
## Check input
r = 5;
if (len > 0)
if (isscalar(varargin{1}) && varargin{1} > 0)
r = varargin{1};
else
error("imsmooth: third input argument must be a positive scalar when performing averaging");
endif
endif
## Compute filter
f = fspecial("disk", r);
## Pad image
i = double (padarray (I, [r r], "symmetric"));
## Perform the filtering
for i = imchannels:-1:1
J(:,:,i) = conv2(I(:,:,i), f, "valid");
endfor
############################
### Median Filtering ###
############################
case "median"
## Check input
s = [3, 3];
if (len > 0)
opt = varargin{1};
if (isscalar(opt) && opt > 0)
s = [opt, opt];
elseif (isvector(opt) && numel(opt) == 2 && all(opt>0))
s = opt;
else
error("imsmooth: third input argument must be a positive scalar or two-vector");
endif
s = round(s); # just in case the use supplies non-integers.
endif
## Perform the filtering
for i = imchannels:-1:1
J(:,:,i) = medfilt2(I(:,:,i), s, "symmetric");
endfor
###############################
### Bilateral Filtering ###
###############################
case "bilateral"
## Check input
if (len > 0 && !isempty(varargin{1}))
if (isscalar(varargin{1}) && varargin{1} > 0)
sigma_d = varargin{1};
else
error("imsmooth: spread of closeness function must be a positive scalar");
endif
else
sigma_d = 2;
endif
if (len > 1 && !isempty(varargin{2}))
if (isscalar(varargin{2}) && varargin{2} > 0)
sigma_r = varargin{2};
else
error("imsmooth: spread of similarity function must be a positive scalar");
endif
else
sigma_r = 10/255;
if (isinteger(I)), sigma_r *= intmax(C); endif
endif
## Pad image
s = max([round(3*sigma_d),1]);
I = padarray (I, [s s], "symmetric");
## Perform the filtering
J = __bilateral__(I, sigma_d, sigma_r);
############################
### Perona and Malik ###
############################
case {"perona & malik", "perona and malik", "p&m"}
## Check input
K = 25;
method1 = @(d) exp(-(d./K).^2);
method2 = @(d) 1./(1 + (d./K).^2);
method = method1;
lambda = 0.25;
iter = 10;
if (len > 0 && !isempty(varargin{1}))
if (isscalar(varargin{1}) && varargin{1} > 0)
iter = varargin{1};
else
error("imsmooth: number of iterations must be a positive scalar");
endif
endif
if (len > 1 && !isempty(varargin{2}))
if (isscalar(varargin{2}) && varargin{2} > 0)
lambda = varargin{2};
else
error("imsmooth: fourth input argument must be a scalar when using 'Perona & Malik'");
endif
endif
if (len > 2 && !isempty(varargin{3}))
fail = false;
if (ischar(varargin{3}))
if (strcmpi(varargin{3}, "method1"))
method = method1;
elseif (strcmpi(varargin{3}, "method2"))
method = method2;
else
fail = true;
endif
elseif (strcmp(typeinfo(varargin{3}), "function handle"))
method = varargin{3};
else
fail = true;
endif
if (fail)
error("imsmooth: fifth input argument must be a function handle or the string 'method1' or 'method2' when using 'Perona & Malik'");
endif
endif
## Perform the filtering
I = double(I);
for i = imchannels:-1:1
J(:,:,i) = pm(I(:,:,i), iter, lambda, method);
endfor
#####################################
### Custom Gaussian Smoothing ###
#####################################
case "custom gaussian"
## Check input
if (length (varargin) < 2)
error ("imsmooth: not enough input arguments");
elseif (length (varargin) == 2)
varargin {3} = 0; # default theta value
endif
arg_names = {"third", "fourth", "fifth"};
for k = 1:3
if (isscalar (varargin {k}))
varargin {k} = repmat (varargin {k}, imrows, imcols);
elseif (ismatrix (varargin {k}) && ndims (varargin {k}) == 2)
if (rows (varargin {k}) != imrows || columns (varargin {k}) != imcols)
error (["imsmooth: %s input argument must have same number of rows "
"and columns as the input image"], arg_names {k});
endif
else
error ("imsmooth: %s input argument must be a scalar or a matrix", arg_names {k});
endif
if (!strcmp (class (varargin {k}), "double"))
error ("imsmooth: %s input argument must be of class 'double'", arg_names {k});
endif
endfor
## Perform the smoothing
for i = imchannels:-1:1
J(:,:,i) = __custom_gaussian_smoothing__ (I(:,:,i), varargin {:});
endfor
######################################
### Mean Shift Based Smoothing ###
######################################
# NOT YET IMPLEMENTED
#case "mean shift"
# J = mean_shift(I, varargin{:});
#############################
### Unknown filtering ###
#############################
otherwise
error("imsmooth: unsupported smoothing type '%s'", name);
endswitch
## Cast the result to the same class as the input
J = cast(J, C);
endfunction
## Perona and Malik for gray-scale images
function J = pm(I, iter, lambda, g)
## Initialisation
[imrows, imcols] = size(I);
J = I;
for i = 1:iter
## Pad image
padded = padarray (J, [1 1], "circular");
## Spatial derivatives
dN = padded(1:imrows, 2:imcols+1) - J;
dS = padded(3:imrows+2, 2:imcols+1) - J;
dE = padded(2:imrows+1, 3:imcols+2) - J;
dW = padded(2:imrows+1, 1:imcols) - J;
gN = g(dN);
gS = g(dS);
gE = g(dE);
gW = g(dW);
## Update
J += lambda*(gN.*dN + gS.*dS + gE.*dE + gW.*dW);
endfor
endfunction
## Mean Shift smoothing for gray-scale images
## XXX: This function doesn't work!!
#{
function J = mean_shift(I, s1, s2)
sz = [size(I,2), size(I,1)];
## Mean Shift
[x, y] = meshgrid(1:sz(1), 1:sz(2));
f = ones(s1);
tmp = conv2(ones(sz(2), sz(1)), f, "same"); # We use normalised convolution to handle the border
m00 = conv2(I, f, "same")./tmp;
m10 = conv2(I.*x, f, "same")./tmp;
m01 = conv2(I.*y, f, "same")./tmp;
ms_x = round( m10./m00 ); # konverter ms_x og ms_y til linære indices og arbejd med dem!
ms_y = round( m01./m00 );
ms = sub2ind(sz, ms_y, ms_x);
%for i = 1:10
i = 0;
while (true)
disp(++i)
ms(ms) = ms;
#new_ms = ms(ms);
if (i >200), break; endif
#idx = ( abs(I(ms)-I(new_ms)) < s2 );
#ms(idx) = new_ms(idx);
%for j = 1:length(ms)
% if (abs(I(ms(j))-I(ms(ms(j)))) < s2)
% ms(j) = ms(ms(j));
% endif
%endfor
endwhile
%endfor
## Compute result
J = I(ms);
endfunction
#}
|