/usr/share/octave/packages/image-2.2.2/padarray.m is in octave-image 2.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | ## Copyright (C) 2013 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} padarray (@var{A}, @var{padsize})
## @deftypefnx {Function File} {} padarray (@dots{}, @var{padval})
## @deftypefnx {Function File} {} padarray (@dots{}, @var{pattern})
## @deftypefnx {Function File} {} padarray (@dots{}, @var{direction})
## Pad array or matrix.
##
## Adds padding of length @var{padsize}, to a numeric matrix @var{A}.
## @var{padsize} must be a vector of non-negative values, each of them
## defining the length of padding to its corresponding dimension. For
## example, if @var{padsize} is [4 5], it adds 4 rows (1st dimension)
## and 5 columns (2nd dimension), to both the start and end of @var{A}.
##
## If there's less values in @var{padsize} than number of dimensions in @var{A},
## they're assumed to be zero. Singleton dimensions of @var{A} are also
## padded accordingly (except when @var{pattern} is @qcode{"reflect"}).
##
## The values used in the padding can either be a scalar value @var{padval}, or
## the name of a specific @var{pattern}. Available patterns are:
##
## @table @asis
## @item @qcode{"zeros"} (default)
## Pads with the value 0 (same as passing a @var{padval} of 0). This is the
## default.
##
## @item @qcode{"circular"}
## Pads with a circular repetition of elements in @var{A} (similar to
## tiling @var{A}).
##
## @item @qcode{"replicate"}
## Pads replicating the values at the border of @var{A}.
##
## @item @qcode{"symmetric"}
## Pads with a mirror reflection of @var{A}.
##
## @item @qcode{"reflect"}
## Same as "symmetric", but the borders are not used in the padding. Because
## of this, it is not possible to pad singleton dimensions.
##
## @end table
##
## By default, padding is done in both directions. To change this,
## @var{direction} can be one of the following values:
##
## @table @asis
## @item @qcode{"both"} (default)
## Pad each dimension before the first element of @var{A} the number
## of elements defined by @var{padsize}, and the same number again after
## the last element. This is the default.
##
## @item @qcode{"pre"}
## Pad each dimension before the first element of @var{A} the number of
## elements defined by @var{padsize}.
##
## @item @qcode{"post"}
## Pad each dimension after the last element of @var{A} the number of
## elements defined by @var{padsize}.
##
## @end table
##
## @seealso{cat, flipdim, resize, prepad, postpad}
## @end deftypefn
function B = padarray(A, padsize, varargin)
if (nargin < 2 || nargin > 4)
print_usage ();
elseif (! isvector (padsize) || ! isnumeric (padsize) || any (padsize < 0) ||
any (padsize != fix (padsize)))
error ("padarray: PADSIZE must be a vector of non-negative integers");
endif
## Assure padsize is a row vector
padsize = padsize(:).';
if (! any (padsize))
## Nothing to do here
B = A;
return
endif
## Default values
padval = 0;
pattern = "";
direction = "both";
## There won't be more than 2 elements in varargin
## We have to support setting the padval (shape) and direction in any
## order. Both examples must work:
## padarray (A, padsize, "circular", "pre")
## padarray (A, padsize, "pre", "circular")
for opt = 1:numel(varargin)
val = varargin{opt};
if (ischar (val))
if (any (strcmpi (val, {"pre", "post", "both"})))
direction = val;
elseif (any (strcmpi (val, {"circular", "replicate", "reflect", "symmetric"})))
pattern = val;
elseif (strcmpi (val, "zeros"))
padval = 0;
else
error ("padarray: unrecognized string option `%s'", val);
endif
elseif (isscalar (val))
padval = val;
else
error ("padarray: PADVAL and DIRECTION must be a string or a scalar");
endif
endfor
fancy_pad = false;
if (! isempty (pattern))
fancy_pad = true;
endif
## Check direction
pre = any (strcmpi (direction, {"pre", "both"}));
post = any (strcmpi (direction, {"post", "both"}));
## Create output matrix
B_ndims = max ([numel(padsize) ndims(A)]);
A_size = size (A);
P_size = padsize;
A_size(end+1:B_ndims) = 1; # add singleton dimensions
P_size(end+1:B_ndims) = 0; # assume zero for missing dimensions
pre_pad_size = P_size * pre;
B_size = A_size + pre_pad_size + (P_size * post);
## insert input matrix into output matrix
A_idx = cell (B_ndims, 1);
for dim = 1:B_ndims
A_idx{dim} = (pre_pad_size(dim) +1):(pre_pad_size(dim) + A_size(dim));
endfor
if (post && ! pre && (padval == 0 || fancy_pad))
## optimization for post padding only with zeros
B = resize (A, B_size);
else
B = repmat (cast (padval, class (A)), B_size);
B(A_idx{:}) = A;
endif
if (fancy_pad)
## Init a template "index all" cell array
template_idx = repmat ({":"}, [B_ndims 1]);
circular = replicate = symmetric = reflect = false;
switch (tolower (pattern))
case "circular", circular = true;
case "replicate", replicate = true;
case "symmetric", symmetric = true;
case "reflect", reflect = true;
otherwise
error ("padarray: unknown PADVAL `%s'.", pattern);
endswitch
## For a dimension of the input matrix of size 1, since reflect does
## not includes the borders, it is not possible to pad singleton dimensions.
if (reflect && any ((! (A_size -1)) & P_size))
error ("padarray: can't add %s padding to sinleton dimensions", pattern);
endif
## For symmetric and reflect:
##
## The idea is to split the padding into 3 different cases:
## bits
## Parts of the input matrix that are used for the padding.
## In most user cases, there will be only this padding,
## complete will be zero, and so bits will be equal to padsize.
## complete
## Number of full copies of the input matrix are used for
## the padding (for reflect, "full" size is actually minus 1).
## This is divided into pair and unpaired complete. In most
## cases, this will be zero.
## pair complete
## Number of pairs of complete copies.
## unpaired complete
## This is either 1 or 0. If 1, then the complete copy closer
## to the output borders has already been flipped so that if
## there's bits used to pad as well, they don't need to be flipped.
##
## Reasoning pair and unpaired complete: when the pad is much larger
## than the input matrix, we must pay we must pay special attention to
## symmetric and reflect. In a normal case (the padding is smaller than
## the input), we just use the flipped matrix to pad and we're done.
## In other cases, if the input matrix is used multiple times on the
## pad, every other copy of it must NOT be flipped (the padding must be
## symmetric itself) or the padding will be circular.
if (reflect)
A_cut_size = A_size -1;
complete = floor (P_size ./ A_cut_size);
bits = rem (P_size, A_cut_size);
pair_size = A_cut_size * 2;
pair_complete = floor (complete / 2);
unpaired_complete = mod (complete, 2);
else
complete = floor (P_size ./ A_size);
bits = rem (P_size, A_size);
if (circular)
complete_size = complete .* A_size;
elseif (symmetric)
pair_complete = floor (complete / 2);
pair_size = A_size * 2;
unpaired_complete = mod (complete, 2);
endif
endif
dim = 0;
for s = padsize
dim++;
if (s == 0)
## skip this dimension if no padding requested
continue
endif
if (circular)
dim_idx = template_idx;
source_idx = template_idx;
A_idx_end = A_idx{dim}(end);
A_idx_ini = A_idx{dim}(1);
if (complete(dim))
dim_pad_size(1:B_ndims) = 1;
dim_pad_size(dim) = complete(dim)*pre + complete(dim)*post;
dim_idx{dim} = [];
if (pre)
dim_idx{dim} = [(bits(dim) +1):(complete_size(dim) + bits(dim))];
endif
if (post)
dim_idx{dim} = [dim_idx{dim} (A_idx_end +1):(A_idx_end + complete_size(dim))];
endif
source_idx{dim} = A_idx{dim};
B(dim_idx{:}) = repmat (B(source_idx{:}), dim_pad_size);
endif
if (pre)
if (bits(dim))
dim_idx{dim} = 1:bits(dim);
source_idx{dim} = (A_idx_end - bits(dim) +1):A_idx_end;
B(dim_idx{:}) = B(source_idx{:});
endif
endif
if (post)
if (bits(dim))
dim_idx{dim} = (B_size(dim) -bits(dim) +1):B_size(dim);
source_idx{dim} = A_idx_ini:(A_idx_ini + bits(dim) -1);
B(dim_idx{:}) = B(source_idx{:});
endif
endif
elseif (replicate)
dim_pad_size(1:B_ndims) = 1;
dim_pad_size(dim) = P_size(dim);
dim_idx = template_idx;
source_idx = template_idx;
if (pre)
dim_idx{dim} = 1:P_size(dim);
source_idx{dim} = P_size(dim) +1;
B(dim_idx{:}) = repmat (B(source_idx{:}), dim_pad_size);
endif
if (post)
dim_idx{dim} = (A_idx{dim}(end) +1):B_size(dim);
source_idx{dim} = A_idx{dim}(end);
B(dim_idx{:}) = repmat (B(source_idx{:}), dim_pad_size);
endif
## The idea behind symmetric and reflect passing is the same so the
## following cases have similar looking code. However, there's small
## adjustements everywhere that makes it really hard to merge as a
## common case.
elseif (symmetric)
dim_idx = template_idx;
source_idx = template_idx;
A_idx_ini = A_idx{dim}(1);
A_idx_end = A_idx{dim}(end);
if (pre)
if (bits(dim))
dim_idx{dim} = 1:bits(dim);
if (unpaired_complete(dim))
source_idx{dim} = (A_idx_end - bits(dim) +1):A_idx_end;
B(dim_idx{:}) = B(source_idx{:});
else
source_idx{dim} = A_idx_ini:(A_idx_ini + bits(dim) -1);
B(dim_idx{:}) = flipdim (B(source_idx{:}), dim);
endif
endif
endif
if (post)
if (bits(dim))
dim_idx{dim} = (B_size(dim) - bits(dim) +1):B_size(dim);
if (unpaired_complete(dim))
source_idx{dim} = A_idx_ini:(A_idx_ini + bits(dim) -1);
B(dim_idx{:}) = B(source_idx{:});
else
source_idx{dim} = (A_idx_end - bits(dim) +1):A_idx_end;
B(dim_idx{:}) = flipdim (B(source_idx{:}), dim);
endif
endif
endif
if (complete(dim))
dim_pad_size(1:B_ndims) = 1;
source_idx{dim} = A_idx{dim};
flipped_source = flipdim (B(source_idx{:}), dim);
endif
if (pair_complete(dim))
dim_pad_size(dim) = pair_complete(dim);
dim_idx{dim} = [];
if (pre)
dim_idx{dim} = [(1 + bits(dim) + (A_size(dim)*unpaired_complete(dim))):(A_idx_ini -1)];
B(dim_idx{:}) = repmat (cat (dim, B(source_idx{:}), flipped_source), dim_pad_size);
endif
if (post)
dim_idx{dim} = [(A_idx_end +1):(A_idx_end + (pair_size(dim) * pair_complete(dim)))];
B(dim_idx{:}) = repmat (cat (dim, flipped_source, B(source_idx{:})), dim_pad_size);
endif
endif
if (unpaired_complete(dim))
source_idx = template_idx;
if (pre)
dim_idx{dim} = (1 + bits(dim)):(bits(dim) + A_size(dim));
B(dim_idx{:}) = flipped_source(source_idx{:});
endif
if (post)
dim_idx{dim} = (B_size(dim) - bits(dim) - A_size(dim) +1):(B_size(dim) - bits(dim));
B(dim_idx{:}) = flipped_source(source_idx{:});
endif
endif
elseif (reflect)
dim_idx = template_idx;
source_idx = template_idx;
A_idx_ini = A_idx{dim}(1);
A_idx_end = A_idx{dim}(end);
if (pre)
if (bits(dim))
dim_idx{dim} = 1:bits(dim);
if (unpaired_complete(dim))
source_idx{dim} = (A_idx_end - bits(dim)):(A_idx_end -1);
B(dim_idx{:}) = B(source_idx{:});
else
source_idx{dim} = (A_idx_ini +1):(A_idx_ini + bits(dim));
B(dim_idx{:}) = flipdim (B(source_idx{:}), dim);
endif
endif
endif
if (post)
if (bits(dim))
dim_idx{dim} = (B_size(dim) - bits(dim) +1):B_size(dim);
if (unpaired_complete(dim))
source_idx{dim} = (A_idx_ini +1):(A_idx_ini + bits(dim));
B(dim_idx{:}) = B(source_idx{:});
else
source_idx{dim} = (A_idx_end - bits(dim)):(A_idx_end -1);
B(dim_idx{:}) = flipdim (B(source_idx{:}), dim);
endif
endif
endif
if (complete(dim))
dim_pad_size(1:B_ndims) = 1;
source_idx{dim} = A_idx{dim};
flipped_source = flipdim (B(source_idx{:}), dim);
endif
if (pair_complete(dim))
dim_pad_size(dim) = pair_complete(dim);
dim_idx{dim} = [];
if (pre)
flipped_source_idx = source_idx;
flipped_source_idx{dim} = 1:A_cut_size(dim);
source_idx{dim} = A_idx_ini:(A_idx_end -1);
dim_idx{dim} = [(1 + bits(dim) + (A_cut_size(dim)*unpaired_complete(dim))):(A_idx_ini -1)];
B(dim_idx{:}) = repmat (cat (dim, B(source_idx{:}), flipped_source(flipped_source_idx{:})), dim_pad_size);
endif
if (post)
flipped_source_idx = source_idx;
flipped_source_idx{dim} = 2:A_size(dim);
source_idx{dim} = (A_idx_ini +1):A_idx_end;
dim_idx{dim} = [(A_idx_end +1):(A_idx_end + (pair_size(dim) * pair_complete(dim)))];
B(dim_idx{:}) = repmat (cat (dim, flipped_source(flipped_source_idx{:}), B(source_idx{:})), dim_pad_size);
endif
endif
if (unpaired_complete(dim))
source_idx = template_idx;
if (pre)
source_idx{dim} = 1:(A_size(dim)-1);
dim_idx{dim} = (1 + bits(dim)):(bits(dim) + A_size(dim) -1);
B(dim_idx{:}) = flipped_source(source_idx{:});
endif
if (post)
source_idx{dim} = 2:A_size(dim);
dim_idx{dim} = (B_size(dim) - bits(dim) - A_size(dim) +2):(B_size(dim) - bits(dim));
B(dim_idx{:}) = flipped_source(source_idx{:});
endif
endif
endif
endfor
endif
endfunction
%!demo
%! padarray([1,2,3;4,5,6],[2,1])
%! % pads [1,2,3;4,5,6] with a whole border of 2 rows and 1 columns of 0
%!demo
%! padarray([1,2,3;4,5,6],[2,1],5)
%! % pads [1,2,3;4,5,6] with a whole border of 2 rows and 1 columns of 5
%!demo
%! padarray([1,2,3;4,5,6],[2,1],0,'pre')
%! % pads [1,2,3;4,5,6] with a left and top border of 2 rows and 1 columns of 0
%!demo
%! padarray([1,2,3;4,5,6],[2,1],'circular')
%! % pads [1,2,3;4,5,6] with a whole 'circular' border of 2 rows and 1 columns
%! % border 'repeats' data as if we tiled blocks of data
%!demo
%! padarray([1,2,3;4,5,6],[2,1],'replicate')
%! % pads [1,2,3;4,5,6] with a whole border of 2 rows and 1 columns which
%! % 'replicates' edge data
%!demo
%! padarray([1,2,3;4,5,6],[2,1],'symmetric')
%! % pads [1,2,3;4,5,6] with a whole border of 2 rows and 1 columns which
%! % is symmetric to the data on the edge
## Test default padval and direction
%!assert (padarray ([1;2], [1]), [0;1;2;0]);
%!assert (padarray ([3 4], [0 2]), [0 0 3 4 0 0]);
%!assert (padarray ([1 2 3; 4 5 6], [1 2]),
%! [zeros(1, 7); 0 0 1 2 3 0 0; 0 0 4 5 6 0 0; zeros(1, 7)]);
## Test padding on 3D array
%!test
%! assert (padarray ([1 2 3; 4 5 6], [3 2 1]),
%! cat(3, zeros(8, 7),
%! [ [ zeros(3, 7) ]
%! [zeros(2, 2) [1 2 3; 4 5 6] zeros(2, 2) ]
%! [ zeros(3,7)] ],
%! zeros (8, 7)));
## Test if default param are ok
%!assert (padarray ([1 2], [4 5]), padarray ([1 2], [4 5], 0));
%!assert (padarray ([1 2], [4 5]), padarray ([1 2], [4 5], "both"));
## Test literal padval
%!assert (padarray ([1;2], [1], i), [i; 1; 2; i]);
## Test directions (horizontal)
%!assert (padarray ([1;2], [1], i, "pre"), [i; 1; 2]);
%!assert (padarray ([1;2], [1], i, "post"), [1; 2; i]);
%!assert (padarray ([1;2], [1], i, "both"), [i; 1; 2; i]);
## Test directions (vertical)
%!assert (padarray ([1 2], [0 1], i, "pre"), [i 1 2]);
%!assert (padarray ([1 2], [0 1], i, "post"), [1 2 i]);
%!assert (padarray ([1 2], [0 1], i, "both"), [i 1 2 i]);
## Test vertical padsize
%!assert (padarray ([1 2], [0;1], i, "both"), [i 1 2 i]);
## Test circular padding
%!test
%! A = [1 2 3; 4 5 6];
%! B = repmat (A, 7, 9);
%! assert (padarray (A, [1 2], "circular", "pre"), B(2:4,2:6));
%! assert (padarray (A, [1 2], "circular", "post"), B(3:5,4:8));
%! assert (padarray (A, [1 2], "circular", "both"), B(2:5,2:8));
%! ## This tests when padding is bigger than data
%! assert (padarray (A, [5 10], "circular", "both"), B(2:13,3:25));
% Test circular padding with int* uint* class types
%!test
%! A = int8 ([1 2 3; 4 5 6]);
%! B = repmat (A, 7, 9);
%! assert (padarray (A, [1 2], "circular", "pre"), B(2:4,2:6));
%! assert (padarray (A, [1 2], "circular", "post"), B(3:5,4:8));
%! assert (padarray (A, [1 2], "circular", "both"), B(2:5,2:8));
%! ## This tests when padding is bigger than data
%! assert (padarray (A, [5 10], "circular", "both"), B(2:13,3:25));
## Test replicate padding
%!test
%! A = [1 2; 3 4];
%! B = kron (A, ones (10, 5));
%! assert (padarray (A, [9 4], "replicate", "pre"), B(1:11,1:6));
%! assert (padarray (A, [9 4], "replicate", "post"), B(10:20,5:10));
%! assert (padarray (A, [9 4], "replicate", "both"), B);
%! ## same with uint class
%! assert (padarray (uint8 (A), [9 4], "replicate", "pre"), uint8 (B(1:11,1:6)));
%! assert (padarray (uint8 (A), [9 4], "replicate", "post"), uint8 (B(10:20,5:10)));
%! assert (padarray (uint8 (A), [9 4], "replicate", "both"), uint8 (B));
## Test symmetric padding
%!test
%! A = [1:3
%! 4:6];
%! HA = [3:-1:1
%! 6:-1:4];
%! VA = [4:6
%! 1:3];
%! VHA = [6:-1:4
%! 3:-1:1];
%! B = [VHA VA VHA
%! HA A HA
%! VHA VA VHA];
%! assert (padarray (A, [1 2], "symmetric", "pre"), B(2:4,2:6));
%! assert (padarray (A, [1 2], "symmetric", "post"), B(3:5,4:8));
%! assert (padarray (A, [1 2], "symmetric", "both"), B(2:5,2:8));
%! ## same with int class
%! assert (padarray (int16 (A), [1 2], "symmetric", "pre"), int16 (B(2:4,2:6)));
%! assert (padarray (int16 (A), [1 2], "symmetric", "post"), int16 (B(3:5,4:8)));
%! assert (padarray (int16 (A), [1 2], "symmetric", "both"), int16 (B(2:5,2:8)));
## Repeat some tests with int* uint* class types
%!assert (padarray (int8 ([1; 2]), [1]), int8 ([0; 1; 2; 0]));
%!assert (padarray (uint8 ([3 4]), [0 2]), uint8 ([0 0 3 4 0 0]));
%!assert (padarray (int16 ([1; 2]), [1], 4), int16 ([4; 1; 2; 4]));
%!assert (padarray (uint16 ([1; 2]), [1], 0), uint16 ([0; 1; 2; 0]));
%!assert (padarray (uint32 ([1; 2]), [1], 6, "post"), uint32 ([1; 2; 6]));
%!assert (padarray (int32 ([1; 2]), [1], int32 (4), "pre"), int32 ([4; 1; 2]));
## Test symmetric and reflect for multiple lengths of padding (since the way
## it's done changes based on this). By iterating from 10 on a matrix of size
## 10, we catch the cases where there's only part of the matrix on the pad, a
## single copy of the matrix, a single copy with bits of non-flipped matrix, two
##copies of the matrix (flipped and non-flipped), the two copies with bits.
%!test
%! in = [ 7 5 1 3
%! 5 3 3 4
%! 7 5 2 3
%! 6 1 3 8];
%! padded = [
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1 5 7 7 5 1 3 3 1
%! 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3 3 5 5 3 3 4 4 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3 1 6 6 1 3 8 8 3
%! 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2 5 7 7 5 2 3 3 2];
%! for ite = 1:10
%! assert (padarray (in, [ite ite], "symmetric"), padded((11-ite):(14+ite),(11-ite):(14+ite)));
%! assert (padarray (in, [ite ite], "symmetric", "pre"), padded((11-ite):14,(11-ite):14));
%! assert (padarray (in, [ite ite], "symmetric", "post"), padded(11:(14+ite),11:(14+ite)));
%! endfor
%!test
%! in = [ 7 5 4 9
%! 6 4 5 1
%! 5 3 3 3
%! 2 6 7 3];
%! padded = [
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6 7 3 7 6 2 6
%! 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4
%! 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5 4 9 4 5 7 5
%! 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4 5 1 5 4 6 4];
%! for ite = 1:10
%! assert (padarray (in, [ite ite], "reflect"), padded((11-ite):(14+ite),(11-ite):(14+ite)));
%! assert (padarray (in, [ite ite], "reflect", "pre"), padded((11-ite):14,(11-ite):14));
%! assert (padarray (in, [ite ite], "reflect", "post"), padded(11:(14+ite),11:(14+ite)));
%! endfor
|