/usr/share/octave/packages/image-2.2.2/phantom.m is in octave-image 2.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | ## Copyright (C) 2010 Alex Opie <lx_op@orcon.net.nz>
## Copyright (C) 2013 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{P}} = phantom ()
## @deftypefnx {Function File} {@var{P}} = phantom (@var{model})
## @deftypefnx {Function File} {@var{P}} = phantom (@var{E})
## @deftypefnx {Function File} {@var{P}} = phantom (@dots{}, @var{n})
## @deftypefnx {Function File} {[@var{P}, @var{E}]} = phantom (@dots{})
## Create computational phantom head.
##
## A phantom is a known object (either real or purely mathematical) that is
## used for testing image reconstruction algorithms. The Shepp-Logan phantom
## is a popular mathematical model of a cranial slice, made up of a set of
## overlaying ellipses. This allows rigorous testing of computed tomography
## (CT) algorithms as it can be analytically transformed with the radon
## transform (see the functions @code{radon} and @code{iradon}).
##
## The phantom @var{P}, is created by overlaying ellipses as defined by the
## matrix @var{E} or one of the standard @var{model}s, in a square of size
## @var{n} by @var{n} (defaults to 256).
##
## The available standard @var{model}s (use the output argument @var{E} to
## inspect the details of the different ellipses) are:
##
## @table @asis
## @item @qcode{"Sheep-Logan"}
## This is the original Sheep-Logan model with 10 ellipses as described in
## Table 1 of @cite{Shepp, Lawrence A., and Benjamin F. Logan. "The Fourier
## reconstruction of a head section." Nuclear Science, IEEE Transactions on
## 21, no. 3 (1974): 21-43.}
##
## @item @qcode{"Modified Shepp-Logan"} (default)
## A modification of the original Shepp-Logan model to give a better contrast,
## as described in Table B.3 of @cite{Toft, Peter Aundal. "The radon
## transform-theory and implementation." PhD diss., Department of Mathematical
## Modelling, Technical University of Denmark, 1996.}
##
## @end table
##
## A 6 column matrix @var{E} can be used to generate a custom image by
## superimposing arbitrary ellipses. Each row defines a single ellipse, with
## each column for the values of @{I, a, b, x0, y0, phi@}:
##
## @table @abbr
## @item I
## is the additive intensity of the ellipse
##
## @item a
## is the length of the major axis
##
## @item b
## is the length of the minor axis
##
## @item x0
## is the horizontal offset of the centre of the ellipse
##
## @item y0
## is the vertical offset of the centre of the ellipse
##
## @item phi
## is the counterclockwise rotation of the ellipse in degrees,
## measured as the angle between the x axis and the ellipse major axis.
##
## @end table
##
## The image bounding box in the algorithm is @{[-1, -1], [1, 1]@}, so the
## values of a, b, x0, y0 should all be specified with this in mind.
##
## Example:
##
## @example
## @group
## P = phantom (512);
## imshow (P);
## @end group
## @end example
##
## @seealso{iradon, radon}
## @end deftypefn
function [head, ellipses] = phantom (varargin)
if (nargin > 2)
print_usage ()
endif
## Would be really cool if we implemented a 3D phantom as already described
## in Cheng Guan Koay, Joelle E. Sarlls, and Evren Ozarslan (2007).
## "Three-Dimensional Analytical Magnetic Resonance Imaging Phantom in the
## Fourier Domain". Magnetic Resonance in Medicine 58:430 - 436.
## The Table 1 on their paper to generate the 3D model, would take 8 columns,
## an extra value for z axis coordinates, and extra axis length.
## They mention other phantom heads as more canonical 3D head phantoms (read
## the introduction)
## Defaults
ellipses = mod_shepp_logan ();
n = 256;
if (nargin)
## Check validity of N
chk_n = @(x) isnumeric (x) && isscalar (x) && ceil (x) == x;
in = varargin{1};
if (ischar (in))
switch (tolower (in))
case "shepp-logan", ellipses = shepp_logan ();
case "modified shepp-logan", ellipses = mod_shepp_logan ();
otherwise
error ("phantom: unknown MODEL `%s'", in);
endswitch
elseif (isnumeric (in) && ndims (in) == 2 && columns (in) == 6)
ellipses = in;
elseif (chk_n (in))
n = in;
## If N is the first argument, we can't have more
if (nargin > 1)
print_usage ();
endif
else
error ("phantom: first argument must either be MODEL, E, or N");
endif
## If there is a second input argument, must be N
if (nargin > 1)
if (chk_n (varargin{2}))
n = varargin{2};
else
error ("phantom: N must be numeric scalar");
endif
endif
endif
## Initialize blank image
head = zeros (n);
# Create the pixel grid
xvals = (-1 : 2 / (n - 1) : 1);
xgrid = repmat (xvals, n, 1);
for i = 1:rows (ellipses)
I = ellipses (i, 1);
a2 = ellipses (i, 2)^2;
b2 = ellipses (i, 3)^2;
x0 = ellipses (i, 4);
y0 = ellipses (i, 5);
phi = ellipses (i, 6) * pi / 180; # Rotation angle in radians
## Create the offset x and y values for the grid
x = xgrid - x0;
y = rot90 (xgrid) - y0;
cos_p = cos (phi);
sin_p = sin (phi);
## Find the pixels within the ellipse
locs = find (((x .* cos_p + y .* sin_p).^2) ./ a2 ...
+ ((y .* cos_p - x .* sin_p).^2) ./ b2 <= 1);
## Add the ellipse intensity to those pixels
head(locs) += I;
endfor
endfunction
function ellipses = shepp_logan ()
## Standard head phantom, taken from Shepp & Logan
##
## Note that the first element of this matrix, the gray value for the first
## ellipse (human skull), has a value of 1.0 even though the paper gives it a
## a value of 2.0 (see Table 1 on page 32 and Figure 1 on page 34). This
## change is so that the **head** intensity values appear in the range [0 1]
## rather than the range [1 2].
##
## **The problem with this**
##
## The background still need an intensity value which is going to be 0. This
## means that we can't distinguish between the background and the ventricles
## (ellipse "c" and "d" whose intensities are a + b + c and a + b + d, see
## Figure 1) since they will have an intensity value of 0 (actually, because
## of machine precision the ventricules will be almost 0). But if we didn't
## made this change, the ** image** range would be [0 2] with all of the head
## details compressed in half of the display range. Also, Matlab seems to be
## doing the same.
persistent ellipses = [ 1 0.69 0.92 0 0 0
-0.98 0.6624 0.874 0 -0.0184 0
-0.02 0.11 0.31 0.22 0 -18
-0.02 0.16 0.41 -0.22 0 18
0.01 0.21 0.25 0 0.35 0
0.01 0.046 0.046 0 0.1 0
0.01 0.046 0.046 0 -0.1 0
0.01 0.046 0.023 -0.08 -0.605 0
0.01 0.023 0.023 0 -0.606 0
0.01 0.023 0.046 0.06 -0.605 0];
endfunction
function ellipses = mod_shepp_logan ()
## Modified version of Shepp & Logan's head phantom, adjusted to improve
## contrast. Taken from Peter Toft PhD thesis, Table B.3
persistent ellipses = [ 1.0 0.69 0.92 0.0 0.0 0
-0.8 0.6624 0.874 0.0 -0.0184 0
-0.2 0.11 0.31 0.22 0.0 -18
-0.2 0.16 0.41 -0.22 0.0 18
0.1 0.21 0.25 0.0 0.35 0
0.1 0.046 0.046 0.0 0.1 0
0.1 0.046 0.046 0.0 -0.1 0
0.1 0.046 0.023 -0.08 -0.605 0
0.1 0.023 0.023 0.0 -0.606 0
0.1 0.023 0.046 0.06 -0.605 0];
endfunction
%!demo
%! P = phantom (512);
%! imshow (P);
|