/usr/share/octave/packages/nan-2.5.9/hist2res.m is in octave-nan 2.5.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | function [R]=hist2res(H,fun)
% Evaluates Histogram data
% [R]=hist2res(H)
%
% [y]=hist2res(H,fun)
% estimates fun-statistic
%
% fun 'mean' mean
% 'std' standard deviation
% 'var' variance
% 'sem' standard error of the mean
% 'rms' root mean square
% 'meansq' mean of squares
% 'sum' sum
% 'sumsq' sum of squares
% 'CM#' central moment of order #
% 'skewness' skewness
% 'kurtosis' excess coefficient (Fisher kurtosis)
%
% see also: NaN/statistic
%
% REFERENCES:
% [1] C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.
% [2] C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
% [3] http://www.itl.nist.gov/
% [4] http://mathworld.wolfram.com/
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.
% $Id: hist2res.m 9387 2011-12-15 10:42:14Z schloegl $
% Copyright (c) 1996-2002,2006 by Alois Schloegl <alois.schloegl@gmail.com>
% This function is part of the NaN-toolbox
% http://pub.ist.ac.at/~schloegl/matlab/NaN/
if strcmp(H.datatype,'HISTOGRAM'),
elseif strcmp(H.datatype,'qc:histo')
HDR = H;
if isfield(H,'THRESHOLD'),
TH = H.THRESHOLD;
else
TH = repmat([-inf,inf],HDR.NS,1);
end;
HIS = H.HIS;
% remove overflowing samples
HIS.N = sumskipnan(HIS.H);
for k = 1:size(HIS.H,2);
t = HIS.X(:,min(k,size(HIS.X,2)));
HIS.H(xor(t<=min(TH(k,:)), t>=max(TH(k,:))),k) = 0;
end;
Nnew = sumskipnan(HIS.H);
R.ratio_lost = 1-Nnew./HIS.N;
HIS.N = Nnew;
% scale into physical values
if H.FLAG.UCAL,
%t = HIS.X;
%for k=1:length(HDR.InChanSelect),
% HIS.X(:,k) = t(:,min(size(t,2),k))*HDR.Calib(k+1,k)+HDR.Calib(1,k);
%end;
HIS.X = [ones(size(HIS.X,1),1),repmat(HIS.X,1,size(HIS.H,2)./size(HIS.X,2))]*H.Calib;
end;
H = HIS;
else
fprintf(2,'ERROR: arg1 is not a histogram\n');
return;
end;
if nargin<2, fun=[]; end;
global FLAG_implicit_unbiased_estimation;
%%% check whether FLAG was already defined
if ~exist('FLAG_implicit_unbiased_estimation','var'),
FLAG_implicit_unbiased_estimation=[];
end;
%%% set DEFAULT value of FLAG
if isempty(FLAG_implicit_unbiased_estimation),
FLAG_implicit_unbiased_estimation=logical(1);
end;
sz = size(H.H)./size(H.X);
R.N = sumskipnan(H.H,1);
R.SUM = sumskipnan(H.H.*repmat(H.X,sz),1);
R.SSQ = sumskipnan(H.H.*repmat(H.X.*H.X,sz),1);
%R.S3P = sumskipnan(H.H.*repmat(H.X.^3,sz),1); % sum of 3rd power
R.S4P = sumskipnan(H.H.*repmat(H.X.^4,sz),1); % sum of 4th power
%R.S5P = sumskipnan(H.H.*repmat(H.X.^5,sz),1); % sum of 5th power
R.MEAN = R.SUM./R.N;
R.MSQ = R.SSQ./R.N;
R.RMS = sqrt(R.MSQ);
R.SSQ0 = R.SSQ-R.SUM.*R.MEAN; % sum square of mean removed
if FLAG_implicit_unbiased_estimation,
n1 = max(R.N-1,0); % in case of n=0 and n=1, the (biased) variance, STD and STE are INF
else
n1 = R.N;
end;
R.VAR = R.SSQ0./n1; % variance (unbiased)
R.STD = sqrt(R.VAR); % standard deviation
R.SEM = sqrt(R.SSQ0./(R.N.*n1)); % standard error of the mean
R.SEV = sqrt(n1.*(n1.*R.S4P./R.N+(R.N.^2-2*R.N+3).*(R.SSQ./R.N).^2)./(R.N.^3)); % standard error of the variance
R.Coefficient_of_variation = R.STD./R.MEAN;
R.CM2 = R.SSQ0./n1;
x = repmat(H.X,sz) - repmat(R.MEAN,size(H.X,1),1);
R.CM3 = sumskipnan(H.H.*(x.^3),1)./n1;
R.CM4 = sumskipnan(H.H.*(x.^4),1)./n1;
%R.CM5 = sumskipnan(H.H.*(x.^5),1)./n1;
R.SKEWNESS = R.CM3./(R.STD.^3);
R.KURTOSIS = R.CM4./(R.VAR.^2)-3;
R.MAD = sumskipnan(H.H.*abs(x),1)./R.N; % mean absolute deviation
H.PDF = H.H./H.N(ones(size(H.H,1),1),:);
status=warning('off');
R.ENTROPY = -sumskipnan(H.PDF.*log2(H.PDF),1);
warning(status);
R.QUANT = repmat(min(diff(H.X,[],1)),1,size(H.H,2)/size(H.X,2));
R.MAX = max(H.X);
R.MIN = min(H.X);
R.RANGE = R.MAX-R.MIN;
if ~isempty(fun),
fun=upper(fun);
if strncmp(fun,'CM',2)
oo = str2double(fun(3:length(fun)));
R = sumskipnan(H.PDF.*(x.^oo),1);
else
R = getfield(R,fun);
end;
end;
|