This file is indexed.

/usr/share/octave/packages/nan-2.5.9/kappa.m is in octave-nan 2.5.9-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
function [kap,se,H,z,p0,SA,R]=kappa(d,c,arg3,w)
% KAPPA estimates Cohen's kappa coefficient
%   and related statistics 
%
% [...] = kappa(d1,d2);
%	NaN's are handled as missing values and are ignored
% [...] = kappa(d1,d2,'notIgnoreNAN');
%	NaN's are handled as just another Label.
% [kap,sd,H,z,ACC,sACC,MI] = kappa(...);
% X = kappa(...);
%
% d1    data of scorer 1 
% d2    data of scorer 2 
%
% kap	Cohen's kappa coefficient point
% se	standard error of the kappa estimate
% H	Concordance matrix, i.e. confusion matrix
% z	z-score
% ACC	overall agreement (accuracy) 
% sACC	specific accuracy 
% MI 	Mutual information or transfer information (in [bits])
% X 	is a struct containing all the fields above
%       For two classes, a number of additional summary statistics including 
%         TPR, FPR, FDR, PPV, NPF, F1, dprime, Matthews Correlation coefficient (MCC) or 
%	Phi coefficient (PHI=MCC), Specificity and Sensitivity 
%       are provided. Note, the positive category must the larger label (in d and c), otherwise 
%       the confusion matrix becomes transposed and the summary statistics are messed up. 
%
%
% Reference(s):
% [1] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
% [2] J Bortz, GA Lienert (1998) Kurzgefasste Statistik f|r die klassische Forschung, Springer Berlin - Heidelberg. 
%        Kapitel 6: Uebereinstimmungsmasze fuer subjektive Merkmalsurteile. p. 265-270.
% [3] http://www.cmis.csiro.au/Fiona.Evans/personal/msc/html/chapter3.html
% [4] Kraemer, H. C. (1982). Kappa coefficient. In S. Kotz and N. L. Johnson (Eds.), 
%        Encyclopedia of Statistical Sciences. New York: John Wiley & Sons.
% [5] http://ourworld.compuserve.com/homepages/jsuebersax/kappa.htm
% [6] http://en.wikipedia.org/wiki/Receiver_operating_characteristic

%	$Id: kappa.m 9608 2012-02-10 09:56:25Z schloegl $
%	Copyright (c) 1997-2006,2008,2009,2011 by Alois Schloegl <alois.schloegl@gmail.com>	
%       This function is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/
%
%    BioSig is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    BioSig is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with BioSig.  If not, see <http://www.gnu.org/licenses/>.


mode.ignoreNAN = 1; 
kk = [];
if nargin>2
	if ischar(arg3)
		if strcmpi(arg3,'notIgnoreNAN')
			mode.ignoreNAN = 0; 
		 end
	else 
		kk = arg3; 
	end
end; 		 
if nargin<4
	w = [];
end; 	

if nargin>1,
	d = d(:);
	c = c(:);
	
	tmp    = [d;c];
	maxtmp = max(tmp);
	tmp(isnan(tmp)) = maxtmp+1;
	[X.Label,i,j]   = unique(tmp);
	c = j(1+numel(d):end);
	d = j(1:numel(d));
	kk = max(j);
	maxCLASS = kk - any(tmp>maxtmp);

	if mode.ignoreNAN,
		if any(j > maxCLASS)
%			fprintf(2,'Warning KAPPA: some elements are NaN. These are handled as missing values and are ignored.\n');
%			fprintf(2,'If NaN should be handled as just another label, use kappa(..,''notIgnoreNaN'').\n');
			ix = find((c<=maxCLASS) & (d<=maxCLASS));
			d = d(ix); c=c(ix);
			if ~isempty(w), w = w(ix); end; 
			kk = kk - 1;
		end;
		X.Label(X.Label>maxtmp) = []; 
	else 
		X.Label(X.Label>maxtmp) = NaN; 
	end;

	if isempty(w)
		H = full( sparse (d, c, 1, kk, kk) );
	elseif ~isempty(w),
		H = full( sparse (d, c, w, kk, kk) );
	end;

else
	X.Label = 1:min(size(d));
    	H = d(X.Label,X.Label);

end;

s = warning; 
warning('off');

N = sum(H(:)); 
p0  = sum(diag(H))/N;  %accuracy of observed agreement, overall agreement 
%OA = sum(diag(H))/N);

p_i = sum(H,1);
pi_ = sum(H,2)';

SA  = 2*diag(H)'./(p_i+pi_); % specific agreement 

pe  = (p_i*pi_')/(N*N);  % estimate of change agreement

px  = sum(p_i.*pi_.*(p_i+pi_))/(N*N*N);

%standard error 
kap = (p0-pe)/(1-pe);
sd  = sqrt((pe+pe*pe-px)/(N*(1-pe*pe)));

%standard error 
se  = sqrt((p0+pe*pe-px)/N)/(1-pe);
if ~isreal(se),
	z = NaN;
else
        z = kap/se;
end

if ((1 < nargout) && (nargout<7)) 
	warning(s);	
	return; 
end; 

% Nykopp's entropy
pwi = sum(H,2)/N;                       % p(x_i)
pwj = sum(H,1)/N;                       % p(y_j)
pji = H./repmat(sum(H,2),1,size(H,2));  % p(y_j | x_i) 
R   = - sumskipnan(pwj.*log2(pwj)) + sumskipnan(pwi'*(pji.*log2(pji)));

if (nargout>1), return; end; 

X.kappa = kap; 
X.kappa_se = se; 
X.data = H;
X.H    = X.data;
X.z    = z; 
X.ACC  = p0; 
X.sACC = SA;
X.MI   = R;
X.datatype = 'confusion';

if length(H)==2,
	% see http://en.wikipedia.org/wiki/Receiver_operating_characteristic
  	% Note that the confusion matrix used here is has positive values in 
	% the 2nd row and column, moreover the true values are indicated by
	% rows (transposed). Thus, in summary H(1,1) and H(2,2) are exchanged 
	% as compared to the wikipedia article.  
	X.TP  = H(2,2);
	X.TN  = H(1,1);
	X.FP  = H(1,2);
	X.FN  = H(2,1);
	X.FNR = H(2,1) / sum(H(2,:));
	X.FPR = H(1,2) / sum(H(1,:));
	X.TPR = H(2,2) / sum(H(2,:));
	X.PPV = H(2,2) / sum(H(:,2));
	X.NPV = H(1,1) / sum(H(:,1));
	X.FDR = H(1,2) / sum(H(:,2));
	X.MCC = det(H) / sqrt(prod([sum(H), sum(H')]));
	X.PHI = X.MCC; 
	X.F1  = 2 * X.TP / (sum(H(2,:)) + sum(H(:,2)));
	X.Sensitivity = X.TPR;	%% hit rate, recall
	X.Specificity = 1 - X.FPR;
	X.Precision   = X.PPV;
	X.dprime = norminv(X.TPR) - norminv(X.FDR);
end;

kap = X;  
warning(s);