This file is indexed.

/usr/share/octave/packages/nan-2.5.9/quantile.m is in octave-nan 2.5.9-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
function Q=quantile(Y,q,DIM,method)
% QUANTILE calculates the quantiles of histograms and sample arrays.  
%
%  Q = quantile(Y,q)
%  Q = quantile(Y,q,DIM)
%     returns the q-th quantile along dimension DIM of sample array Y.
%     size(Q) is equal size(Y) except for dimension DIM which is size(Q,DIM)=length(Q)
%
%  Q = quantile(HIS,q)
%     returns the q-th quantile from the histogram HIS. 
%     HIS must be a HISTOGRAM struct as defined in HISTO2 or HISTO3.
%     If q is a vector, the each row of Q returns the q(i)-th quantile 
%
% see also: HISTO2, HISTO3, PERCENTILE


%	$Id: quantile.m 9601 2012-02-09 14:14:36Z schloegl $
%	Copyright (C) 1996-2003,2005,2006,2007,2009,2011 by Alois Schloegl <alois.schloegl@gmail.com>	
%       This function is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/

%    This program is free software; you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation; either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program; If not, see <http://www.gnu.org/licenses/>.

if nargin<3,
        DIM = [];
end;
if isempty(DIM),
        DIM = find(size(Y)>1,1);
        if isempty(DIM), DIM = 1; end;
end;


if nargin<2,
	help quantile
        
else
	[q, rix]  = sort(q(:)'); 	% sort quantile values 
	[tmp,rix] = sort(rix);	% generate reverse index 

        SW = isstruct(Y);
        if SW, SW = isfield(Y,'datatype'); end;
        if SW, SW = strcmp(Y.datatype,'HISTOGRAM'); end;
        if SW,                 
                [yr, yc] = size(Y.H);
                Q = repmat(nan,length(q),yc);
                if ~isfield(Y,'N');
                        Y.N = sum(Y.H,1);
                end;
                
                for k1 = 1:yc,
                        tmp = Y.H(:,k1)>0;
                        h = full(Y.H(tmp,k1));
                        t = Y.X(tmp,min(size(Y.X,2),k1));

			N = Y.N(k1);  
			t2(1:2:2*length(t)) = t;
			t2(2:2:2*length(t)) = t;
			x2 = cumsum(h); 
			x(1)=0; 
			x(2:2:2*length(t)) = x2;
			x(3:2:2*length(t)) = x2(1:end-1);

			% Q(q < 0 | 1 < q,:) = NaN;  % already done at initialization
			Q(q==0,k1) = t2(1);
			Q(q==1,k1) = t2(end);
			n = 1; 
		    	for k2 = find( (0 < q) & (q < 1) )
				while (q(k2)*N > x(n)),
					n=n+1; 
				end;

				if q(k2)*N==x(n)
					% mean of upper and lower bound 
					Q(k2,k1) = (t2(n)+t2(n+1))/2;
				else
					Q(k2,k1) = t2(n);
				end;
                        end;
			Q = Q(rix,:);	% order resulting quantiles according to original input q 
                end;


        elseif isnumeric(Y),
		sz = size(Y);
		if DIM>length(sz),
		        sz = [sz,ones(1,DIM-length(sz))];
		end;

		f  = zeros(1,length(q));        
		f( (q < 0) | (1 < q) ) = NaN;
		D1 = prod(sz(1:DIM-1));
		D3 = prod(sz(DIM+1:length(sz)));
		Q  = repmat(nan,[sz(1:DIM-1),length(q),sz(DIM+1:length(sz))]);
		for k = 0:D1-1,
		for l = 0:D3-1,
		        xi = k + l * D1*sz(DIM) + 1 ;
			xo = k + l * D1*length(q) + 1;
		        t  = Y(xi:D1:xi+D1*sz(DIM)-1);
		        t  = t(~isnan(t));
		        N  = length(t); 
			
			if (N==0)
		            	f(:) = NaN;        
			else
				t  = sort(t);
				t2(1:2:2*length(t)) = t; 
				t2(2:2:2*length(t)) = t;
				x = floor((1:2*length(t))/2);
				%f(q < 0 | 1 < q) = NaN;  % for efficiency its defined outside loop 
				f(q==0) = t2(1);
				f(q==1) = t2(end);

				n = 1; 
			    	for k2 = find( (0 < q) & (q < 1) )
					while (q(k2)*N > x(n)),
						n = n+1;
					end;

					if q(k2)*N==x(n)
						% mean of upper and lower bound 
						f(k2) = (t2(n) + t2(n+1))/2;   
					else
						f(k2) = t2(n);
					end; 
				end; 		
			end; 
			Q(xo:D1:xo + D1*length(q) - 1) = f(rix);
		end;
		end;

        else
                fprintf(2,'Error QUANTILES: invalid input argument\n');
                return;
        end;
        
end;

%!assert(quantile(1:10,[.2,.5]),[2.5, 5.5])