This file is indexed.

/usr/share/octave/packages/nan-2.5.9/ranks.m is in octave-nan 2.5.9-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
function r = ranks(X,DIM,Mode)
% RANKS gives the rank of each element in a vector.
% This program uses an advanced algorithm with averge effort O(m.n.log(n)) 
% NaN in the input yields NaN in the output.
% 
% r = ranks(X[,DIM])
%   if X is a vector, return the vector of ranks of X adjusted for ties.
%   if X is matrix, the rank is calculated along dimension DIM. 
%   if DIM is zero or empty, the lowest dimension with more then 1 element is used. 
% r = ranks(X,DIM,'traditional')
%   implements the traditional algorithm with O(n^2) computational 
%   and O(n^2) memory effort
% r = ranks(X,DIM,'mtraditional')
%   implements the traditional algorithm with O(n^2) computational 
%   and O(n) memory effort
% r = ranks(X,DIM,'advanced   ')
%   implements an advanced algorithm with O(n*log(n)) computational 
%   and O(n.log(n)) memory effort
% r = ranks(X,DIM,'advanced-ties')
%   implements an advanced algorithm with O(n*log(n)) computational 
%   and O(n.log(n)) memory effort
%   but without correction for ties 
%   This is the fastest algorithm 
%
% see also: CORRCOEF, SPEARMAN, RANKCORR
%
% REFERENCES:
% --


%    $Id: ranks.m 12338 2013-11-11 22:03:45Z schloegl $
%    Copyright (C) 2000-2002,2005,2010,2013 by Alois Schloegl <alois.schloegl@gmail.com>	
%    This script is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/

%    This program is free software; you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation; either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program; If not, see <http://www.gnu.org/licenses/>.

% Features:
% + is fast, uses an efficient algorithm for the rank correlation
% + computational effort is O(n.log(n)) instead of O(n^2)
% + memory effort is O(n.log(n)), instead of O(n^2). 
%     Now, the ranks of 8000 elements can be easily calculated
% + NaNs in the input yield NaN in the output 
% + compatible with Octave and Matlab
% + traditional method is also implemented for comparison. 


if nargin<2, DIM = 0; end;
if ischar(DIM),
	Mode= DIM; 
	DIM = 0; 
elseif (nargin<3), 
	Mode = '';
end; 
if isempty(Mode),
	Mode='advanced   '; 
end;

sz_orig = size (X);
X = squeeze (X); %remove singleton dimensions for convenience
nd = ndims (X);
if (~DIM)
	 DIM = 1;
end
if DIM > 1 %shift the array so that the dimension to sort over is first
  perm = [DIM 1:(DIM-1) (DIM+1):nd];
  X = permute (X, perm);
end
if nd > 2  %convert X to 2-D if it has >2 dimensions
  sz = size(X);
  N = sz(1);
  M = prod(sz(2:end));
  X = reshape(X, N, M);
else
  [N,M] = size(X);
end

if strcmp(Mode(1:min(11,length(Mode))),'traditional'), % traditional, needs O(m.n^2)
% this method was originally implemented by: KH <Kurt.Hornik@ci.tuwien.ac.at>
% Comment of KH: This code is rather ugly, but is there an easy way to get the ranks adjusted for ties from sort?

r = zeros(size(X));
        for i = 1:M;
                p = X(:, i(ones(1,N)));
                r(:,i) = (sum (p < p') + (sum (p == p') + 1) / 2)';
        end;
        % r(r<1)=NaN;
        
elseif strcmp(Mode(1:min(12,length(Mode))),'mtraditional'), 
        % + memory effort is lower
        
	r = zeros(size(X));
        for k = 1:N;
        for i = 1:M;
                r(k,i) = (sum (X(:,i) < X(k,i)) + (sum (X(:,i)  == X(k,i)) + 1) / 2);
        end;
        end;
        % r(r<1)=NaN;
        
elseif strcmp(Mode(1:min(13,length(Mode))),'advanced-ties'), % advanced
        % + uses sorting, hence needs only O(m.n.log(n)) computations         
        % - does not fix ties

        r = zeros(size(X));
        [sX, ix] = sort(X,1); 
	for k=1:M,
	        [tmp,r(:,k)] = sort(ix(:,k),1);	    % r yields the rank of each element 	
	end;        
	r(isnan(X)) = nan;

        
elseif strcmp(Mode(1:min(8,length(Mode))),'advanced'), % advanced
        % + uses sorting, hence needs only O(m.n.log(n)) computations         
        
        % [tmp,ix] = sort([X,Y]);     
        % [tmp,r] = sort(ix);     % r yields rank. 
        % but because sort does not work accordingly for cell arrays, 
        % and DIM argument not supported by Octave 
        % and DIM argument does not work for cell-arrays in Matlab
        % we sort each column separately:
        
        r = zeros(size(X));
        n = N;
        for k = 1:M,
                [sX,ix] = sort(X(:,k)); 
                [tmp,r(:,k)] = sort(ix);	    % r yields the rank of each element 	
                
                % identify multiple occurences (not sure if this important, but implemented to be compatible with traditional version)
                if isnumeric(X)
                        n=sum(~isnan(X(:,k)));
                end;
                x = [0;find(sX~=[sX(2:N);n])];    % for this reason, cells are not implemented yet.   
                d = find(diff(x)>1);
                
                % correct rank of multiple occurring elements
                for l = 1:length(d),
                        t = (x(d(l))+1:x(d(l)+1))';
                        r(ix(t),k) = mean(t);
                end;
        end;
        r(isnan(X)) = nan;
        
elseif strcmp(Mode,'=='), 
% the results of both algorithms are compared for testing.    
%
% if the Mode-argument is omitted, both methods are applied and 
% the results are compared. Once the advanced algorithm is confirmed, 
% it will become the default Mode. 

        r  = ranks(X,'advanced   ');
        r(isnan(r)) = 1/2;
        
        if N>100,
	        r1 = ranks(X,'mtraditional');  % Memory effort is lower 
        else
                r1 = ranks(X,'traditional');
        end;
        if ~all(all(r==r1)),
                fprintf(2,'WARNING RANKS: advanced algorithm does not agree with traditional one\n Please report to <alois.schloegl@gmail.com>\n');
                r = r1;
        end;
        r(isnan(X)) = nan;
end;

%reshape r to match the input X
if nd > 2
  r = reshape (r, sz);
end
if (DIM > 1)
	r = ipermute (r, perm);
end
r = reshape (r, sz_orig); %restore any singleton dimensions


%!shared z, r1, r2
%! z = magic (4);
%! r1 = [4   1   1   4; 2   3   3   2; 3   2   2   3; 1   4   4   1];
%! r2 = [4   1   2   3; 1   4   3   2; 3   2   1   4; 2   3   4   1];
%!assert (ranks(z), r1);
%!assert (ranks(z, 2), r2);
%! z = nan(2, 2, 2);  
%! z(:, :, 1) = [1 2; 3 4];
%! z(:, :, 2) = [4 3; 2 1];
%! r1 = cat(3, [1 1; 2 2], [2 2; 1 1]);
%! r2 = cat(3, [1 2; 1 2], [2 1; 2 1]);
%!assert (ranks(z), r1);
%!assert (ranks(z, 2), r2);
%!assert (ranks(z, 3), r1);