/usr/share/octave/packages/nan-2.5.9/statistic.m is in octave-nan 2.5.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | function [varargout]=statistic(i,DIM,fun)
% STATISTIC estimates various statistics at once.
%
% R = STATISTIC(x,DIM)
% calculates all statistic (see list of fun) in dimension DIM
% R is a struct with all statistics
%
% y = STATISTIC(x,fun)
% estimate of fun on dimension DIM
% y gives the statistic of fun
%
% DIM dimension
% 1: STATS of columns
% 2: STATS of rows
% N: STATS of N-th dimension
% default or []: first DIMENSION, with more than 1 element
%
% fun 'mean' mean
% 'std' standard deviation
% 'var' variance
% 'sem' standard error of the mean
% 'rms' root mean square
% 'meansq' mean of squares
% 'sum' sum
% 'sumsq' sum of squares
% 'CM#' central moment of order #
% 'skewness' skewness
% 'kurtosis' excess coefficient (Fisher kurtosis)
% 'mad' mean absolute deviation
%
% features:
% - can deal with NaN's (missing values)
% - dimension argument
% - compatible to Matlab and Octave
%
% see also: SUMSKIPNAN
%
% REFERENCE(S):
% [1] http://www.itl.nist.gov/
% [2] http://mathworld.wolfram.com/
% $Id: statistic.m 8223 2011-04-20 09:16:06Z schloegl $
% Copyright (C) 2000-2003,2010 by Alois Schloegl <alois.schloegl@gmail.com>
% This function is part of the NaN-toolbox
% http://pub.ist.ac.at/~schloegl/matlab/NaN/
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
if nargin==1,
DIM=[];
fun=[];
elseif nargin==2,
if ~isnumeric(DIM),
fun=DIM;
DIM=[];
else
fun=[];
end
end
if isempty(DIM),
DIM = find(size(i)>1,1);
if isempty(DIM), DIM=1; end;
end;
%R.N = sumskipnan(~isnan(i),DIM); % number of elements
[R.SUM,R.N,R.SSQ] = sumskipnan(i,DIM); % sum
%R.S3P = sumskipnan(i.^3,DIM); % sum of 3rd power
R.S4P = sumskipnan(i.^4,DIM); % sum of 4th power
%R.S5P = sumskipnan(i.^5,DIM); % sum of 5th power
R.MEAN = R.SUM./R.N; % mean
R.MSQ = R.SSQ./R.N; % mean square
R.RMS = sqrt(R.MSQ); % root mean square
%R.SSQ0 = R.SSQ-R.SUM.*R.MEAN; % sum square of mean removed
R.SSQ0 = R.SSQ - real(R.SUM).*real(R.MEAN) - imag(R.SUM).*imag(R.MEAN); % sum square of mean removed
%if flag_implicit_unbiased_estim; %% ------- unbiased estimates -----------
n1 = max(R.N-1,0); % in case of n=0 and n=1, the (biased) variance, STD and SEM are INF
%else
% n1 = R.N;
%end;
R.VAR = R.SSQ0./n1; % variance (unbiased)
R.STD = sqrt(R.VAR); % standard deviation
R.SEM = sqrt(R.SSQ0./(R.N.*n1)); % standard error of the mean
R.SEV = sqrt(n1.*(n1.*R.S4P./R.N+(R.N.^2-2*R.N+3).*(R.SSQ./R.N).^2)./(R.N.^3)); % standard error of the variance
R.COEFFICIENT_OF_VARIATION = R.STD./R.MEAN;
q = quantile(i, (1:3)/4, DIM);
%sz=size(i);sz(DIM)=1;
%Q0500=repmat(nan,sz);
%Q0250=Q0500;
%Q0750=Q0500;
%MODE=Q0500;
%for k=1:size(i,2),
% tmp = sort(i(:,k));
%ix = find(~~diff([-inf;tmp;inf]))
%ix2=diff(ix)
%MODE(k)= tmp(max(ix2)==ix2)
% Q0500(k) = flix(tmp,R.N(k)/2 + 0.5);
% Q0250(k) = flix(tmp,R.N(k)/4 + 0.5);
% Q0750(k) = flix(tmp,R.N(k)*3/4 + 0.5);
%end;
%R.MEDIAN = Q0500;
%R.Quartiles = [Q0250; Q0750];
%R.Skewness.Fisher = (R.CM3)./(R.STD.^3); %%% same as R.SKEWNESS
%R.Skewness.Pearson_Mode = (R.MEAN-R.MODE)./R.STD;
%R.Skewness.Pearson_coeff1 = (3*R.MEAN-R.MODE)./R.STD;
%R.Skewness.Pearson_coeff2 = (3*R.MEAN-R.MEDIAN)./R.STD;
%R.Skewness.Bowley = (Q0750+Q0250 - 2*Q0500)./(Q0750-Q0250); % quartile skewness coefficient
R.CM2 = R.SSQ0./n1;
szi = size(i); szm = [size(R.MEAN),1];
i = i - repmat(R.MEAN,szi./szm(1:length(szi)));
R.CM3 = sumskipnan(i.^3,DIM)./n1;
R.CM4 = sumskipnan(i.^4,DIM)./n1;
%R.CM5 = sumskipnan(i.^5,DIM)./n1;
R.SKEWNESS = R.CM3./(R.STD.^3);
R.KURTOSIS = R.CM4./(R.VAR.^2)-3;
[R.MAD,N] = sumskipnan(abs(i),DIM); % mean absolute deviation
R.MAD = R.MAD./n1;
R.datatype = 'STAT Level 3';
tmp = version;
if 0, %str2num(tmp(1))*1000+str2num(tmp(3))*100+str2num(tmp(5:6))<2136,
% ###obsolete: was needed for Octave version < 2.1.36
if strcmp(fun(1:2),'CM')
oo = str2double(fun(3:length(fun)));
varargout = sumskipnan(i.^oo,DIM)./n1;
elseif isempty(fun)
varargout = R;
else
varargout = getfield(R,upper(fun));
end;
else
if iscell(fun),
for k=1:length(fun),
if strcmp(fun{k}(1:2),'CM')
oo = str2double(fun{k}(3:length(fun{k})));
varargout{k} = sumskipnan(i.^oo,DIM)./n1;
else
varargout{k} = getfield(R,upper(fun{k}));
end;
end;
elseif ischar(fun),
if strcmp(fun(1:2),'CM')
oo = str2double(fun(3:length(fun)));
varargout{1} = sumskipnan(i.^oo,DIM)./n1;
else
varargout{1} = getfield(R,upper(fun));
end;
else
varargout{1} = R;
end;
end;
|