/usr/share/octave/packages/nan-2.5.9/xval.m is in octave-nan 2.5.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | function [R,CC]=xval(D,classlabel,MODE,arg4)
% XVAL is used for crossvalidation
%
% [R,CC] = xval(D,classlabel)
% .. = xval(D,classlabel,CLASSIFIER)
% .. = xval(D,classlabel,CLASSIFIER,type)
% .. = xval(D,{classlabel,W},CLASSIFIER)
% .. = xval(D,{classlabel,W,NG},CLASSIFIER)
%
% example:
% load_fisheriris; %builtin iris dataset
% C = species;
% K = 5; NG = [1:length(C)]'*K/length(C);
% [R,CC] = xval(meas,{C,[],NG},'NBC');
%
% Input:
% D: data features (one feature per column, one sample per row)
% classlabel labels of each sample, must have the same number of rows as D.
% Two different encodings are supported:
% {-1,1}-encoding (multiple classes with separate columns for each class) or
% 1..M encoding.
% So [1;2;3;1;4] is equivalent to
% [+1,-1,-1,-1;
% [-1,+1,-1,-1;
% [-1,-1,+1,-1;
% [+1,-1,-1,-1]
% [-1,-1,-1,+1]
% Note, samples with classlabel=0 are ignored.
%
% CLASSIFIER can be any classifier supported by train_sc (default='LDA')
% {'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf', 'RDA','GDBC',
% 'SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW'}
% these can be modified by ###/GSVD, ###/sparse and ###/DELETION.
% /DELETION removes in case of NaN's either the rows or the columns (which removes less data values) with any NaN
% /sparse and /GSVD preprocess the data an reduce it to some lower-dimensional space.
% Hyperparameters (like alpha for PLA, gamma/lambda for RDA, c_value for SVM, etc) can be defined as
% CLASSIFIER.hyperparameter.alpha, etc. and
% CLASSIFIER.TYPE = 'PLA' (as listed above).
% See train_sc for details.
% W: weights for each sample (row) in D.
% default: [] (i.e. all weights are 1)
% number of elements in W must match the number of rows of D
% NG: used to define the type of cross-valdiation
% Leave-One-Out-Method (LOOM): NG = [1:length(classlabel)]' (default)
% Leave-K-Out-Method: NG = ceil([1:length(classlabel)]'/K)
% K-fold XV: NG = ceil([1:length(classlabel)]'*K/length(classlabel))
% group-wise XV (if samples are not indepentent) can be also defined here
% samples from the same group (dependent samples) get the same identifier
% samples from different groups get different classifiers
% TYPE: defines the type of cross-validation procedure if NG is not specified
% 'LOOM' leave-one-out-method
% k k-fold crossvalidation
%
% OUTPUT:
% R contains the resulting performance metric
% CC contains the classifier
%
% plota(R) shows the confusion matrix of the results
%
% see also: TRAIN_SC, TEST_SC, CLASSIFY, PLOTA
%
% References:
% [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
% John Wiley & Sons, 2001.
% [2] A. Schlögl, J. Kronegg, J.E. Huggins, S. G. Mason;
% Evaluation criteria in BCI research.
% (Eds.) G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.-R.Müller;
% Towards Brain-Computer Interfacing, MIT Press, 2007, p.327-342
% $Id$
% Copyright (C) 2008,2009,2010 by Alois Schloegl <alois.schloegl@gmail.com>
% This function is part of the NaN-toolbox
% http://pub.ist.ac.at/~schloegl/matlab/NaN/
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 3
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.
if (nargin<3) || isempty(MODE),
MODE = 'LDA';
end;
if ischar(MODE)
tmp = MODE;
clear MODE;
MODE.TYPE = tmp;
elseif ~isfield(MODE,'TYPE')
MODE.TYPE='';
end;
sz = size(D);
NG = [];
W = [];
if iscell(classlabel)
[b,i,C] = unique(classlabel{:,1});
if size(classlabel,2)>1,
W = [classlabel{:,2}];
end;
if size(classlabel,2)>2,
[Label,tmp1,NG] = unique(classlabel{:,3});
end;
elseif size(classlabel,2)>1,
%% group-wise classvalidation
C = classlabel(:,1);
W = classlabel(:,2);
if size(classlabel,2)==2,
warning('This option defines W and NG in an ambigous way - use instead xval(D,{C,[],NG},...) or xval(D,{C,W},...)');
else
[Label,tmp1,NG] = unique(classlabel(:,3));
end;
else
C = classlabel;
end;
if all(W==1), W = []; end;
if sz(1)~=size(C,1),
error('length of data and classlabel does not fit');
end;
% use only valid samples
ix0 = find(~any(isnan(C),2));
if isempty(NG)
if (nargin<4) || strcmpi(arg4,'LOOM')
%% LOOM
NG = (1:sz(1))';
elseif isnumeric(arg4)
if isscalar(arg4)
% K-fold XV
NG = ceil((1:length(C))'*arg4/length(C));
elseif length(arg4)==2,
NG = ceil((1:length(C))'*arg4(1)/length(C));
end;
end;
end;
sz = size(D);
if sz(1)~=length(C),
error('length of data and classlabel does not fit');
end;
if ~isfield(MODE,'hyperparameter')
MODE.hyperparameter = [];
end
cl = repmat(NaN,size(classlabel,1),1);
for k = 1:max(NG),
ix = ix0(NG(ix0)~=k);
if isempty(W),
CC = train_sc(D(ix,:), C(ix), MODE);
else
CC = train_sc(D(ix,:), C(ix), MODE, W(ix));
end;
ix = ix0(NG(ix0)==k);
r = test_sc(CC, D(ix,:));
cl(ix,1) = r.classlabel;
end;
%R = kappa(C,cl,'notIgnoreNAN',W);
R = kappa(C,cl,[],W);
%R2 = kappa(R.H);
R.ERR = 1-R.ACC;
if isnumeric(R.Label)
R.Label = cellstr(int2str(R.Label));
end;
if nargout>1,
% final classifier
if isempty(W),
CC = train_sc(D,C,MODE);
else
CC = train_sc(D,C,MODE,W);
end;
CC.Labels = 1:max(C);
%CC.Labels = unique(C);
end;
|