/usr/share/octave/packages/odepkg-0.8.4/odebwe.m is in octave-odepkg 0.8.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 | %# Copyright (C) 2009-2012, Sebastian Schoeps <schoeps AT math DOT uni-wuppertal DOT de>
%# OdePkg - A package for solving ordinary differential equations and more
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%#
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with this program; If not, see <http://www.gnu.org/licenses/>.
%# -*- texinfo -*-
%# @deftypefn {Function File} {[@var{}] =} odebwe (@var{@@fun}, @var{slot}, @var{init}, [@var{opt}], [@var{par1}, @var{par2}, @dots{}])
%# @deftypefnx {Command} {[@var{sol}] =} odebwe (@var{@@fun}, @var{slot}, @var{init}, [@var{opt}], [@var{par1}, @var{par2}, @dots{}])
%# @deftypefnx {Command} {[@var{t}, @var{y}, [@var{xe}, @var{ye}, @var{ie}]] =} odebwe (@var{@@fun}, @var{slot}, @var{init}, [@var{opt}], [@var{par1}, @var{par2}, @dots{}])
%#
%# This function file can be used to solve a set of stiff ordinary differential equations (stiff ODEs) or stiff differential algebraic equations (stiff DAEs) with the Backward Euler method.
%#
%# If this function is called with no return argument then plot the solution over time in a figure window while solving the set of ODEs that are defined in a function and specified by the function handle @var{@@fun}. The second input argument @var{slot} is a double vector that defines the time slot, @var{init} is a double vector that defines the initial values of the states, @var{opt} can optionally be a structure array that keeps the options created with the command @command{odeset} and @var{par1}, @var{par2}, @dots{} can optionally be other input arguments of any type that have to be passed to the function defined by @var{@@fun}.
%#
%# If this function is called with one return argument then return the solution @var{sol} of type structure array after solving the set of ODEs. The solution @var{sol} has the fields @var{x} of type double column vector for the steps chosen by the solver, @var{y} of type double column vector for the solutions at each time step of @var{x}, @var{solver} of type string for the solver name and optionally the extended time stamp information @var{xe}, the extended solution information @var{ye} and the extended index information @var{ie} all of type double column vector that keep the informations of the event function if an event function handle is set in the option argument @var{opt}.
%#
%# If this function is called with more than one return argument then return the time stamps @var{t}, the solution values @var{y} and optionally the extended time stamp information @var{xe}, the extended solution information @var{ye} and the extended index information @var{ie} all of type double column vector.
%#
%# For example, solve an anonymous implementation of the Van der Pol equation
%#
%# @example
%# fvdb = @@(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];
%# vjac = @@(vt,vy) [0, 1; -1 - 2 * vy(1) * vy(2), 1 - vy(1)^2];
%# vopt = odeset ("RelTol", 1e-3, "AbsTol", 1e-3, \
%# "NormControl", "on", "OutputFcn", @@odeplot, \
%# "Jacobian",vjac);
%# odebwe (fvdb, [0 20], [2 0], vopt);
%# @end example
%# @end deftypefn
%#
%# @seealso{odepkg}
function [varargout] = odebwe (vfun, vslot, vinit, varargin)
if (nargin == 0) %# Check number and types of all input arguments
help ('odebwe');
error ('OdePkg:InvalidArgument', ...
'Number of input arguments must be greater than zero');
elseif (nargin < 3)
print_usage;
elseif ~(isa (vfun, 'function_handle') || isa (vfun, 'inline'))
error ('OdePkg:InvalidArgument', ...
'First input argument must be a valid function handle');
elseif (~isvector (vslot) || length (vslot) < 2)
error ('OdePkg:InvalidArgument', ...
'Second input argument must be a valid vector');
elseif (~isvector (vinit) || ~isnumeric (vinit))
error ('OdePkg:InvalidArgument', ...
'Third input argument must be a valid numerical value');
elseif (nargin >= 4)
if (~isstruct (varargin{1}))
%# varargin{1:len} are parameters for vfun
vodeoptions = odeset;
vfunarguments = varargin;
elseif (length (varargin) > 1)
%# varargin{1} is an OdePkg options structure vopt
vodeoptions = odepkg_structure_check (varargin{1}, 'odebwe');
vfunarguments = {varargin{2:length(varargin)}};
else %# if (isstruct (varargin{1}))
vodeoptions = odepkg_structure_check (varargin{1}, 'odebwe');
vfunarguments = {};
end
else %# if (nargin == 3)
vodeoptions = odeset;
vfunarguments = {};
end
%# Start preprocessing, have a look which options are set in
%# vodeoptions, check if an invalid or unused option is set
vslot = vslot(:).'; %# Create a row vector
vinit = vinit(:).'; %# Create a row vector
if (length (vslot) > 2) %# Step size checking
vstepsizefixed = true;
else
vstepsizefixed = false;
end
%# The adaptive method require a second estimate for
%# the comparsion, while the fixed step size algorithm
%# needs only one
if ~vstepsizefixed
vestimators = 2;
else
vestimators = 1;
end
%# Get the default options that can be set with 'odeset' temporarily
vodetemp = odeset;
%# Implementation of the option RelTol has been finished. This option
%# can be set by the user to another value than default value.
if (isempty (vodeoptions.RelTol) && ~vstepsizefixed)
vodeoptions.RelTol = 1e-6;
warning ('OdePkg:InvalidArgument', ...
'Option "RelTol" not set, new value %f is used', vodeoptions.RelTol);
elseif (~isempty (vodeoptions.RelTol) && vstepsizefixed)
warning ('OdePkg:InvalidArgument', ...
'Option "RelTol" will be ignored if fixed time stamps are given');
end
%# Implementation of the option AbsTol has been finished. This option
%# can be set by the user to another value than default value.
if (isempty (vodeoptions.AbsTol) && ~vstepsizefixed)
vodeoptions.AbsTol = 1e-6;
warning ('OdePkg:InvalidArgument', ...
'Option "AbsTol" not set, new value %f is used', vodeoptions.AbsTol);
elseif (~isempty (vodeoptions.AbsTol) && vstepsizefixed)
warning ('OdePkg:InvalidArgument', ...
'Option "AbsTol" will be ignored if fixed time stamps are given');
else
vodeoptions.AbsTol = vodeoptions.AbsTol(:); %# Create column vector
end
%# Implementation of the option NormControl has been finished. This
%# option can be set by the user to another value than default value.
if (strcmp (vodeoptions.NormControl, 'on')) vnormcontrol = true;
else vnormcontrol = false; end
%# Implementation of the option OutputFcn has been finished. This
%# option can be set by the user to another value than default value.
if (isempty (vodeoptions.OutputFcn) && nargout == 0)
vodeoptions.OutputFcn = @odeplot;
vhaveoutputfunction = true;
elseif (isempty (vodeoptions.OutputFcn)), vhaveoutputfunction = false;
else vhaveoutputfunction = true;
end
%# Implementation of the option OutputSel has been finished. This
%# option can be set by the user to another value than default value.
if (~isempty (vodeoptions.OutputSel)), vhaveoutputselection = true;
else vhaveoutputselection = false; end
%# Implementation of the option OutputSave has been finished. This
%# option can be set by the user to another value than default value.
if (isempty (vodeoptions.OutputSave)), vodeoptions.OutputSave = 1;
end
%# Implementation of the option Stats has been finished. This option
%# can be set by the user to another value than default value.
%# Implementation of the option InitialStep has been finished. This
%# option can be set by the user to another value than default value.
if (isempty (vodeoptions.InitialStep) && ~vstepsizefixed)
vodeoptions.InitialStep = (vslot(1,2) - vslot(1,1)) / 10;
warning ('OdePkg:InvalidArgument', ...
'Option "InitialStep" not set, new value %f is used', vodeoptions.InitialStep);
end
%# Implementation of the option MaxNewtonIterations has been finished. This option
%# can be set by the user to another value than default value.
if isempty (vodeoptions.MaxNewtonIterations)
vodeoptions.MaxNewtonIterations = 10;
warning ('OdePkg:InvalidArgument', ...
'Option "MaxNewtonIterations" not set, new value %f is used', vodeoptions.MaxNewtonIterations);
end
%# Implementation of the option NewtonTol has been finished. This option
%# can be set by the user to another value than default value.
if isempty (vodeoptions.NewtonTol)
vodeoptions.NewtonTol = 1e-7;
warning ('OdePkg:InvalidArgument', ...
'Option "NewtonTol" not set, new value %f is used', vodeoptions.NewtonTol);
end
%# Implementation of the option MaxStep has been finished. This option
%# can be set by the user to another value than default value.
if (isempty (vodeoptions.MaxStep) && ~vstepsizefixed)
vodeoptions.MaxStep = (vslot(1,2) - vslot(1,1)) / 10;
warning ('OdePkg:InvalidArgument', ...
'Option "MaxStep" not set, new value %f is used', vodeoptions.MaxStep);
end
%# Implementation of the option Events has been finished. This option
%# can be set by the user to another value than default value.
if (~isempty (vodeoptions.Events)), vhaveeventfunction = true;
else vhaveeventfunction = false; end
%# Implementation of the option Jacobian has been finished. This option
%# can be set by the user to another value than default value.
if (~isempty (vodeoptions.Jacobian) && isnumeric (vodeoptions.Jacobian))
vhavejachandle = false; vjac = vodeoptions.Jacobian; %# constant jac
elseif (isa (vodeoptions.Jacobian, 'function_handle'))
vhavejachandle = true; %# jac defined by a function handle
else %# no Jacobian - we will use numerical differentiation
vhavejachandle = false;
end
%# Implementation of the option Mass has been finished. This option
%# can be set by the user to another value than default value.
if (~isempty (vodeoptions.Mass) && isnumeric (vodeoptions.Mass))
vhavemasshandle = false; vmass = vodeoptions.Mass; %# constant mass
elseif (isa (vodeoptions.Mass, 'function_handle'))
vhavemasshandle = true; %# mass defined by a function handle
else %# no mass matrix - creating a diag-matrix of ones for mass
vhavemasshandle = false; vmass = sparse (eye (length (vinit)) );
end
%# Implementation of the option MStateDependence has been finished.
%# This option can be set by the user to another value than default
%# value.
if (strcmp (vodeoptions.MStateDependence, 'none'))
vmassdependence = false;
else vmassdependence = true;
end
%# Other options that are not used by this solver. Print a warning
%# message to tell the user that the option(s) is/are ignored.
if (~isequal (vodeoptions.NonNegative, vodetemp.NonNegative))
warning ('OdePkg:InvalidArgument', ...
'Option "NonNegative" will be ignored by this solver');
end
if (~isequal (vodeoptions.Refine, vodetemp.Refine))
warning ('OdePkg:InvalidArgument', ...
'Option "Refine" will be ignored by this solver');
end
if (~isequal (vodeoptions.JPattern, vodetemp.JPattern))
warning ('OdePkg:InvalidArgument', ...
'Option "JPattern" will be ignored by this solver');
end
if (~isequal (vodeoptions.Vectorized, vodetemp.Vectorized))
warning ('OdePkg:InvalidArgument', ...
'Option "Vectorized" will be ignored by this solver');
end
if (~isequal (vodeoptions.MvPattern, vodetemp.MvPattern))
warning ('OdePkg:InvalidArgument', ...
'Option "MvPattern" will be ignored by this solver');
end
if (~isequal (vodeoptions.MassSingular, vodetemp.MassSingular))
warning ('OdePkg:InvalidArgument', ...
'Option "MassSingular" will be ignored by this solver');
end
if (~isequal (vodeoptions.InitialSlope, vodetemp.InitialSlope))
warning ('OdePkg:InvalidArgument', ...
'Option "InitialSlope" will be ignored by this solver');
end
if (~isequal (vodeoptions.MaxOrder, vodetemp.MaxOrder))
warning ('OdePkg:InvalidArgument', ...
'Option "MaxOrder" will be ignored by this solver');
end
if (~isequal (vodeoptions.BDF, vodetemp.BDF))
warning ('OdePkg:InvalidArgument', ...
'Option "BDF" will be ignored by this solver');
end
%# Starting the initialisation of the core solver odebwe
vtimestamp = vslot(1,1); %# timestamp = start time
vtimelength = length (vslot); %# length needed if fixed steps
vtimestop = vslot(1,vtimelength); %# stop time = last value
vdirection = sign (vtimestop); %# Flag for direction to solve
if (~vstepsizefixed)
vstepsize = vodeoptions.InitialStep;
vminstepsize = (vtimestop - vtimestamp) / (1/eps);
else %# If step size is given then use the fixed time steps
vstepsize = vslot(1,2) - vslot(1,1);
vminstepsize = sign (vstepsize) * eps;
end
vretvaltime = vtimestamp; %# first timestamp output
vretvalresult = vinit; %# first solution output
%# Initialize the OutputFcn
if (vhaveoutputfunction)
if (vhaveoutputselection)
vretout = vretvalresult(vodeoptions.OutputSel);
else
vretout = vretvalresult;
end
feval (vodeoptions.OutputFcn, vslot.', ...
vretout.', 'init', vfunarguments{:});
end
%# Initialize the EventFcn
if (vhaveeventfunction)
odepkg_event_handle (vodeoptions.Events, vtimestamp, ...
vretvalresult.', 'init', vfunarguments{:});
end
%# Initialize parameters and counters
vcntloop = 2; vcntcycles = 1; vu = vinit; vcntsave = 2;
vunhandledtermination = true; vpow = 1/2; vnpds = 0;
vcntiter = 0; vcntnewt = 0; vndecomps = 0; vnlinsols = 0;
%# the following option enables the simplified Newton method
%# which evaluates the Jacobian only once instead of the
%# standard method that updates the Jacobian in each iteration
vsimplified = false; % or true
%# The solver main loop - stop if the endpoint has been reached
while ((vdirection * (vtimestamp) < vdirection * (vtimestop)) && ...
(vdirection * (vstepsize) >= vdirection * (vminstepsize)))
%# Hit the endpoint of the time slot exactely
if ((vtimestamp + vstepsize) > vdirection * vtimestop)
vstepsize = vtimestop - vdirection * vtimestamp;
end
%# Run the time integration for each estimator
%# from vtimestamp -> vtimestamp+vstepsize
for j = 1:vestimators
%# Initial value (result of the previous timestep)
y0 = vu;
%# Initial guess for Newton-Raphson
y(j,:) = vu;
%# We do not use a higher order approximation for the
%# comparsion, but two steps by the Backward Euler
%# method
for i = 1:j
% Initialize the time stepping parameters
vthestep = vstepsize / j;
vthetime = vtimestamp + i*vthestep;
vnewtit = 1;
vresnrm = inf (1, vodeoptions.MaxNewtonIterations);
%# Start the Newton iteration
while (vnewtit < vodeoptions.MaxNewtonIterations) && ...
(vresnrm (vnewtit) > vodeoptions.NewtonTol)
%# Compute the Jacobian of the non-linear equation,
%# that is the matrix pencil of the mass matrix and
%# the right-hand-side's Jacobian. Perform a (sparse)
%# LU-Decomposition afterwards.
if ( (vnewtit==1) || (~vsimplified) )
%# Get the mass matrix from the left-hand-side
if (vhavemasshandle) %# Handle only the dynamic mass matrix,
if (vmassdependence) %# constant mass matrices have already
vmass = feval ... %# been set before (if any)
(vodeoptions.Mass, vthetime, y(j,:)', vfunarguments{:});
else %# if (vmassdependence == false)
vmass = feval ... %# then we only have the time argument
(vodeoptions.Mass, y(j,:)', vfunarguments{:});
end
end
%# Get the Jacobian of the right-hand-side's function
if (vhavejachandle) %# Handle only the dynamic jacobian
vjac = feval(vodeoptions.Jacobian, vthetime,...
y(j,:)', vfunarguments{:});
elseif isempty(vodeoptions.Jacobian) %# If no Jacobian is given
vjac = feval(@jacobian, vfun, vthetime,y(j,:)',...
vfunarguments); %# then we differentiate
end
vnpds = vnpds + 1;
vfulljac = vmass/vthestep - vjac;
%# one could do a matrix decomposition of vfulljac here,
%# but the choice of decomposition depends on the problem
%# and therefore we use the backslash-operator in row 374
end
%# Compute the residual
vres = vmass/vthestep*(y(j,:)-y0)' - feval(vfun,vthetime,y(j,:)',vfunarguments{:});
vresnrm(vnewtit+1) = norm(vres,inf);
%# Solve the linear system
y(j,:) = vfulljac\(-vres+vfulljac*y(j,:)');
%# the backslash operator decomposes the matrix
%# and solves the system in a single step.
vndecomps = vndecomps + 1;
vnlinsols = vnlinsols + 1;
%# Prepare next iteration
vnewtit = vnewtit + 1;
end %# while Newton
%# Leave inner loop if Newton diverged
if vresnrm(vnewtit)>vodeoptions.NewtonTol
break;
end
%# Save intermediate solution as initial value
%# for the next intermediate step
y0 = y(j,:);
%# Count all Newton iterations
vcntnewt = vcntnewt + (vnewtit-1);
end %# for steps
%# Leave outer loop if Newton diverged
if vresnrm(vnewtit)>vodeoptions.NewtonTol
break;
end
end %# for estimators
% if all Newton iterations converged
if vresnrm(vnewtit)<vodeoptions.NewtonTol
%# First order approximation using step size h
y1 = y(1,:);
%# If adaptive: first order approximation using step
%# size h/2, if fixed: y1=y2=y3
y2 = y(vestimators,:);
%# Second order approximation by ("Richardson")
%# extrapolation using h and h/2
y3 = y2 + (y2-y1);
end
%# If Newton did not converge, repeat step with reduced
%# step size, otherwise calculate the absolute local
%# truncation error and the acceptable error
if vresnrm(vnewtit)>vodeoptions.NewtonTol
vdelta = 2; vtau = 1;
elseif (~vstepsizefixed)
if (~vnormcontrol)
vdelta = abs (y3 - y1)';
vtau = max (vodeoptions.RelTol * abs (vu.'), vodeoptions.AbsTol);
else
vdelta = norm ((y3 - y1)', Inf);
vtau = max (vodeoptions.RelTol * max (norm (vu.', Inf), 1.0), ...
vodeoptions.AbsTol);
end
else %# if (vstepsizefixed == true)
vdelta = 1; vtau = 2;
end
%# If the error is acceptable then update the vretval variables
if (all (vdelta <= vtau))
vtimestamp = vtimestamp + vstepsize;
vu = y2; % or y3 if we want the extrapolation....
%# Save the solution every vodeoptions.OutputSave steps
if (mod (vcntloop-1,vodeoptions.OutputSave) == 0)
vretvaltime(vcntsave,:) = vtimestamp;
vretvalresult(vcntsave,:) = vu;
vcntsave = vcntsave + 1;
end
vcntloop = vcntloop + 1; vcntiter = 0;
%# Call plot only if a valid result has been found, therefore this
%# code fragment has moved here. Stop integration if plot function
%# returns false
if (vhaveoutputfunction)
if (vhaveoutputselection)
vpltout = vu(vodeoptions.OutputSel);
else
vpltout = vu;
end
vpltret = feval (vodeoptions.OutputFcn, vtimestamp, ...
vpltout.', [], vfunarguments{:});
if vpltret %# Leave loop
vunhandledtermination = false; break;
end
end
%# Call event only if a valid result has been found, therefore this
%# code fragment has moved here. Stop integration if veventbreak is
%# true
if (vhaveeventfunction)
vevent = ...
odepkg_event_handle (vodeoptions.Events, vtimestamp, ...
vu(:), [], vfunarguments{:});
if (~isempty (vevent{1}) && vevent{1} == 1)
vretvaltime(vcntloop-1,:) = vevent{3}(end,:);
vretvalresult(vcntloop-1,:) = vevent{4}(end,:);
vunhandledtermination = false; break;
end
end
end %# If the error is acceptable ...
%# Update the step size for the next integration step
if (~vstepsizefixed)
%# 20080425, reported by Marco Caliari
%# vdelta cannot be negative (because of the absolute value that
%# has been introduced) but it could be 0, then replace the zeros
%# with the maximum value of vdelta
vdelta(find (vdelta == 0)) = max (vdelta);
%# It could happen that max (vdelta) == 0 (ie. that the original
%# vdelta was 0), in that case we double the previous vstepsize
vdelta(find (vdelta == 0)) = max (vtau) .* (0.4 ^ (1 / vpow));
if (vdirection == 1)
vstepsize = min (vodeoptions.MaxStep, ...
min (0.8 * vstepsize * (vtau ./ vdelta) .^ vpow));
else
vstepsize = max (vodeoptions.MaxStep, ...
max (0.8 * vstepsize * (vtau ./ vdelta) .^ vpow));
end
else %# if (vstepsizefixed)
if (vresnrm(vnewtit)>vodeoptions.NewtonTol)
vunhandledtermination = true;
break;
elseif (vcntloop <= vtimelength)
vstepsize = vslot(vcntloop) - vslot(vcntloop-1);
else %# Get out of the main integration loop
break;
end
end
%# Update counters that count the number of iteration cycles
vcntcycles = vcntcycles + 1; %# Needed for cost statistics
vcntiter = vcntiter + 1; %# Needed to find iteration problems
%# Stop solving because the last 1000 steps no successful valid
%# value has been found
if (vcntiter >= 5000)
error (['Solving has not been successful. The iterative', ...
' integration loop exited at time t = %f before endpoint at', ...
' tend = %f was reached. This happened because the iterative', ...
' integration loop does not find a valid solution at this time', ...
' stamp. Try to reduce the value of "InitialStep" and/or', ...
' "MaxStep" with the command "odeset".\n'], vtimestamp, vtimestop);
end
end %# The main loop
%# Check if integration of the ode has been successful
if (vdirection * vtimestamp < vdirection * vtimestop)
if (vunhandledtermination == true)
error ('OdePkg:InvalidArgument', ...
['Solving has not been successful. The iterative', ...
' integration loop exited at time t = %f', ...
' before endpoint at tend = %f was reached. This may', ...
' happen if the stepsize grows smaller than defined in', ...
' vminstepsize. Try to reduce the value of "InitialStep" and/or', ...
' "MaxStep" with the command "odeset".\n'], vtimestamp, vtimestop);
else
warning ('OdePkg:InvalidArgument', ...
['Solver has been stopped by a call of "break" in', ...
' the main iteration loop at time t = %f before endpoint at', ...
' tend = %f was reached. This may happen because the @odeplot', ...
' function returned "true" or the @event function returned "true".'], ...
vtimestamp, vtimestop);
end
end
%# Postprocessing, do whatever when terminating integration algorithm
if (vhaveoutputfunction) %# Cleanup plotter
feval (vodeoptions.OutputFcn, vtimestamp, ...
vu.', 'done', vfunarguments{:});
end
if (vhaveeventfunction) %# Cleanup event function handling
odepkg_event_handle (vodeoptions.Events, vtimestamp, ...
vu.', 'done', vfunarguments{:});
end
%# Save the last step, if not already saved
if (mod (vcntloop-2,vodeoptions.OutputSave) ~= 0)
vretvaltime(vcntsave,:) = vtimestamp;
vretvalresult(vcntsave,:) = vu;
end
%# Print additional information if option Stats is set
if (strcmp (vodeoptions.Stats, 'on'))
vhavestats = true;
vnsteps = vcntloop-2; %# vcntloop from 2..end
vnfailed = (vcntcycles-1)-(vcntloop-2)+1; %# vcntcycl from 1..end
vnfevals = vcntnewt; %# number of rhs evaluations
if isempty(vodeoptions.Jacobian) %# additional evaluations due
vnfevals = vnfevals + vcntnewt*(1+length(vinit)); %# to differentiation
end
%# Print cost statistics if no output argument is given
if (nargout == 0)
vmsg = fprintf (1, 'Number of successful steps: %d\n', vnsteps);
vmsg = fprintf (1, 'Number of failed attempts: %d\n', vnfailed);
vmsg = fprintf (1, 'Number of function calls: %d\n', vnfevals);
end
else
vhavestats = false;
end
if (nargout == 1) %# Sort output variables, depends on nargout
varargout{1}.x = vretvaltime; %# Time stamps are saved in field x
varargout{1}.y = vretvalresult; %# Results are saved in field y
varargout{1}.solver = 'odebwe'; %# Solver name is saved in field solver
if (vhaveeventfunction)
varargout{1}.ie = vevent{2}; %# Index info which event occured
varargout{1}.xe = vevent{3}; %# Time info when an event occured
varargout{1}.ye = vevent{4}; %# Results when an event occured
end
if (vhavestats)
varargout{1}.stats = struct;
varargout{1}.stats.nsteps = vnsteps;
varargout{1}.stats.nfailed = vnfailed;
varargout{1}.stats.nfevals = vnfevals;
varargout{1}.stats.npds = vnpds;
varargout{1}.stats.ndecomps = vndecomps;
varargout{1}.stats.nlinsols = vnlinsols;
end
elseif (nargout == 2)
varargout{1} = vretvaltime; %# Time stamps are first output argument
varargout{2} = vretvalresult; %# Results are second output argument
elseif (nargout == 5)
varargout{1} = vretvaltime; %# Same as (nargout == 2)
varargout{2} = vretvalresult; %# Same as (nargout == 2)
varargout{3} = []; %# LabMat doesn't accept lines like
varargout{4} = []; %# varargout{3} = varargout{4} = [];
varargout{5} = [];
if (vhaveeventfunction)
varargout{3} = vevent{3}; %# Time info when an event occured
varargout{4} = vevent{4}; %# Results when an event occured
varargout{5} = vevent{2}; %# Index info which event occured
end
end
end
function df = jacobian(vfun,vthetime,vtheinput,vfunarguments);
%# Internal function for the numerical approximation of a jacobian
vlen = length(vtheinput);
vsigma = sqrt(eps);
vfun0 = feval(vfun,vthetime,vtheinput,vfunarguments{:});
df = zeros(vlen,vlen);
for j = 1:vlen
vbuffer = vtheinput(j);
if (vbuffer==0)
vh = vsigma;
elseif (abs(vbuffer)>1)
vh = vsigma*vbuffer;
else
vh = sign(vbuffer)*vsigma;
end
vtheinput(j) = vbuffer + vh;
df(:,j) = (feval(vfun,vthetime,vtheinput,...
vfunarguments{:}) - vfun0) / vh;
vtheinput(j) = vbuffer;
end
end
%! # We are using the "Van der Pol" implementation for all tests that
%! # are done for this function. We also define a Jacobian, Events,
%! # pseudo-Mass implementation. For further tests we also define a
%! # reference solution (computed at high accuracy) and an OutputFcn
%!function [ydot] = fpol (vt, vy, varargin) %# The Van der Pol
%! ydot = [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];
%!function [vjac] = fjac (vt, vy, varargin) %# its Jacobian
%! vjac = [0, 1; -1 - 2 * vy(1) * vy(2), 1 - vy(1)^2];
%!function [vjac] = fjcc (vt, vy, varargin) %# sparse type
%! vjac = sparse ([0, 1; -1 - 2 * vy(1) * vy(2), 1 - vy(1)^2]);
%!function [vval, vtrm, vdir] = feve (vt, vy, varargin)
%! vval = fpol (vt, vy, varargin); %# We use the derivatives
%! vtrm = zeros (2,1); %# that's why component 2
%! vdir = ones (2,1); %# seems to not be exact
%!function [vval, vtrm, vdir] = fevn (vt, vy, varargin)
%! vval = fpol (vt, vy, varargin); %# We use the derivatives
%! vtrm = ones (2,1); %# that's why component 2
%! vdir = ones (2,1); %# seems to not be exact
%!function [vmas] = fmas (vt, vy)
%! vmas = [1, 0; 0, 1]; %# Dummy mass matrix for tests
%!function [vmas] = fmsa (vt, vy)
%! vmas = sparse ([1, 0; 0, 1]); %# A sparse dummy matrix
%!function [vref] = fref () %# The computed reference sol
%! vref = [0.32331666704577, -1.83297456798624];
%!function [vout] = fout (vt, vy, vflag, varargin)
%! if (regexp (char (vflag), 'init') == 1)
%! if (any (size (vt) ~= [2, 1])) error ('"fout" step "init"'); end
%! elseif (isempty (vflag))
%! if (any (size (vt) ~= [1, 1])) error ('"fout" step "calc"'); end
%! vout = false;
%! elseif (regexp (char (vflag), 'done') == 1)
%! if (any (size (vt) ~= [1, 1])) error ('"fout" step "done"'); end
%! else error ('"fout" invalid vflag');
%! end
%!
%! %# Turn off output of warning messages for all tests, turn them on
%! %# again if the last test is called
%!error %# input argument number one
%! warning ('off', 'OdePkg:InvalidArgument');
%! B = odebwe (1, [0 25], [3 15 1]);
%!error %# input argument number two
%! B = odebwe (@fpol, 1, [3 15 1]);
%!error %# input argument number three
%! B = odebwe (@flor, [0 25], 1);
%!test %# one output argument
%! vsol = odebwe (@fpol, [0 2], [2 0]);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%! assert (isfield (vsol, 'solver'));
%! assert (vsol.solver, 'odebwe');
%!test %# two output arguments
%! [vt, vy] = odebwe (@fpol, [0 2], [2 0]);
%! assert ([vt(end), vy(end,:)], [2, fref], 1e-3);
%!test %# five output arguments and no Events
%! [vt, vy, vxe, vye, vie] = odebwe (@fpol, [0 2], [2 0]);
%! assert ([vt(end), vy(end,:)], [2, fref], 1e-3);
%! assert ([vie, vxe, vye], []);
%!test %# anonymous function instead of real function
%! fvdb = @(vt,vy) [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];
%! vsol = odebwe (fvdb, [0 2], [2 0]);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# extra input arguments passed trhough
%! vsol = odebwe (@fpol, [0 2], [2 0], 12, 13, 'KL');
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# empty OdePkg structure *but* extra input arguments
%! vopt = odeset;
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt, 12, 13, 'KL');
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!error %# strange OdePkg structure
%! vopt = struct ('foo', 1);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%!test %# Solve vdp in fixed step sizes
%! vsol = odebwe (@fpol, [0:0.001:2], [2 0]);
%! assert (vsol.x(:), [0:0.001:2]');
%! assert (vsol.y(end,:), fref, 1e-2);
%!test %# Solve in backward direction starting at t=0
%! %# vref = [-1.2054034414, 0.9514292694];
%! vsol = odebwe (@fpol, [0 -2], [2 0]);
%! %# assert ([vsol.x(end), vsol.y(end,:)], [-2, fref], 1e-3);
%!test %# Solve in backward direction starting at t=2
%! %# vref = [-1.2154183302, 0.9433018000];
%! vsol = odebwe (@fpol, [2 -2], [0.3233166627 -1.8329746843]);
%! %# assert ([vsol.x(end), vsol.y(end,:)], [-2, fref], 1e-3);
%!test %# AbsTol option
%! vopt = odeset ('AbsTol', 1e-5);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-2);
%!test %# AbsTol and RelTol option
%! vopt = odeset ('AbsTol', 1e-6, 'RelTol', 1e-6);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-2);
%!test %# RelTol and NormControl option -- higher accuracy
%! vopt = odeset ('RelTol', 1e-6, 'NormControl', 'on');
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!
%! %# test for NonNegative option is missing
%! %# test for OutputSel and Refine option is missing
%!
%!test %# Details of OutputSave can't be tested
%! vopt = odeset ('OutputSave', 1, 'OutputSel', 1);
%! vsla = odebwe (@fpol, [0 2], [2 0], vopt);
%! vopt = odeset ('OutputSave', 2);
%! vslb = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert (length (vsla.x) > length (vslb.x))
%!test %# Stats must add further elements in vsol
%! vopt = odeset ('Stats', 'on');
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert (isfield (vsol, 'stats'));
%! assert (isfield (vsol.stats, 'nsteps'));
%!test %# InitialStep option
%! vopt = odeset ('InitialStep', 1e-8);
%! vsol = odebwe (@fpol, [0 0.2], [2 0], vopt);
%! assert ([vsol.x(2)-vsol.x(1)], [1e-8], 1e-9);
%!test %# MaxStep option
%! vopt = odeset ('MaxStep', 1e-2);
%! vsol = odebwe (@fpol, [0 0.2], [2 0], vopt);
%! assert ([vsol.x(5)-vsol.x(4)], [1e-2], 1e-2);
%!test %# Events option add further elements in vsol
%! vopt = odeset ('Events', @feve);
%! vsol = odebwe (@fpol, [0 10], [2 0], vopt);
%! assert (isfield (vsol, 'ie'));
%! assert (vsol.ie, [2; 1; 2; 1]);
%! assert (isfield (vsol, 'xe'));
%! assert (isfield (vsol, 'ye'));
%!test %# Events option, now stop integration
%! vopt = odeset ('Events', @fevn, 'NormControl', 'on');
%! vsol = odebwe (@fpol, [0 10], [2 0], vopt);
%! assert ([vsol.ie, vsol.xe, vsol.ye], ...
%! [2.0, 2.496110, -0.830550, -2.677589], 1e-3);
%!test %# Events option, five output arguments
%! vopt = odeset ('Events', @fevn, 'NormControl', 'on');
%! [vt, vy, vxe, vye, vie] = odebwe (@fpol, [0 10], [2 0], vopt);
%! assert ([vie, vxe, vye], ...
%! [2.0, 2.496110, -0.830550, -2.677589], 1e-3);
%!test %# Jacobian option
%! vopt = odeset ('Jacobian', @fjac);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# Jacobian option and sparse return value
%! vopt = odeset ('Jacobian', @fjcc);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!
%! %# test for JPattern option is missing
%! %# test for Vectorized option is missing
%!
%!test %# Mass option as function
%! vopt = odeset ('Mass', @fmas);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# Mass option as matrix
%! vopt = odeset ('Mass', eye (2,2));
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# Mass option as sparse matrix
%! vopt = odeset ('Mass', sparse (eye (2,2)));
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!test %# Mass option as function and sparse matrix
%! vopt = odeset ('Mass', @fmsa);
%! vsol = odebwe (@fpol, [0 2], [2 0], vopt);
%! assert ([vsol.x(end), vsol.y(end,:)], [2, fref], 1e-3);
%!
%! %# test for MStateDependence option is missing
%! %# test for MvPattern option is missing
%! %# test for InitialSlope option is missing
%! %# test for MaxOrder option is missing
%! %# test for BDF option is missing
%!
%! warning ('on', 'OdePkg:InvalidArgument');
%# Local Variables: ***
%# mode: octave ***
%# End: ***
|