/usr/share/octave/packages/optim-1.4.0/wpolyfit.m is in octave-optim 1.4.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | ## Author: Paul Kienzle <pkienzle@gmail.com>
## This program is granted to the public domain.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{p}, @var{s}] =} wpolyfit (@var{x}, @var{y}, @var{dy}, @var{n})
## Return the coefficients of a polynomial @var{p}(@var{x}) of degree
## @var{n} that minimizes
## @c ########################################################
## @c These lines must be written without space at start to work around
## @c a bug in html generation.
##@iftex
##@tex
##$$
##\sum_{i=1}^N (p(x_i) - y_i)^2
##$$
##@end tex
##@end iftex
##@ifnottex
##@code{sumsq (p(x(i)) - y(i))},
##@end ifnottex
## @c ########################################################
## to best fit the data in the least squares sense. The standard error
## on the observations @var{y} if present are given in @var{dy}.
##
## The returned value @var{p} contains the polynomial coefficients
## suitable for use in the function polyval. The structure @var{s} returns
## information necessary to compute uncertainty in the model.
##
## To compute the predicted values of y with uncertainty use
## @example
## [y,dy] = polyconf(p,x,s,'ci');
## @end example
## You can see the effects of different confidence intervals and
## prediction intervals by calling the wpolyfit internal plot
## function with your fit:
## @example
## feval('wpolyfit:plt',x,y,dy,p,s,0.05,'pi')
## @end example
## Use @var{dy}=[] if uncertainty is unknown.
##
## You can use a chi^2 test to reject the polynomial fit:
## @example
## p = 1-chi2cdf(s.normr^2,s.df);
## @end example
## p is the probability of seeing a chi^2 value higher than that which
## was observed assuming the data are normally distributed around the fit.
## If p < 0.01, you can reject the fit at the 1% level.
##
## You can use an F test to determine if a higher order polynomial
## improves the fit:
## @example
## [poly1,S1] = wpolyfit(x,y,dy,n);
## [poly2,S2] = wpolyfit(x,y,dy,n+1);
## F = (S1.normr^2 - S2.normr^2)/(S1.df-S2.df)/(S2.normr^2/S2.df);
## p = 1-f_cdf(F,S1.df-S2.df,S2.df);
## @end example
## p is the probability of observing the improvement in chi^2 obtained
## by adding the extra parameter to the fit. If p < 0.01, you can reject
## the lower order polynomial at the 1% level.
##
## You can estimate the uncertainty in the polynomial coefficients
## themselves using
## @example
## dp = sqrt(sumsq(inv(s.R'))'/s.df)*s.normr;
## @end example
## but the high degree of covariance amongst them makes this a questionable
## operation.
## @end deftypefn
##
## @deftypefn {Function File} {[@var{p}, @var{s}, @var{mu}] =} wpolyfit (...)
##
## If an additional output @code{mu = [mean(x),std(x)]} is requested then
## the @var{x} values are centered and normalized prior to computing the fit.
## This will give more stable numerical results. To compute a predicted
## @var{y} from the returned model use
## @code{y = polyval(p, (x-mu(1))/mu(2)}
## @end deftypefn
##
## @deftypefn {Function File} {} wpolyfit (...)
##
## If no output arguments are requested, then wpolyfit plots the data,
## the fitted line and polynomials defining the standard error range.
##
## Example
## @example
## x = linspace(0,4,20);
## dy = (1+rand(size(x)))/2;
## y = polyval([2,3,1],x) + dy.*randn(size(x));
## wpolyfit(x,y,dy,2);
## @end example
## @end deftypefn
##
## @deftypefn {Function File} {} wpolyfit (..., 'origin')
##
## If 'origin' is specified, then the fitted polynomial will go through
## the origin. This is generally ill-advised. Use with caution.
##
## Hocking, RR (2003). Methods and Applications of Linear Models.
## New Jersey: John Wiley and Sons, Inc.
##
## @c Will be cut out in optims info file and replaced with the same
## @c refernces explicitely there, since references to core Octave
## @c functions are not automatically transformed from here to there.
## @c BEGIN_CUT_TEXINFO
## @seealso{polyfit}
## @c END_CUT_TEXINFO
## @seealso{polyconf}
## @end deftypefn
function [p_out, s, mu] = wpolyfit (varargin)
## strip 'origin' of the end
args = length(varargin);
if args>0 && ischar(varargin{args})
origin = varargin{args};
args--;
else
origin='';
endif
## strip polynomial order off the end
if args>0
n = varargin{args};
args--;
else
n = [];
end
## interpret the remainder as x,y or x,y,dy or [x,y] or [x,y,dy]
if args == 3
x = varargin{1};
y = varargin{2};
dy = varargin{3};
elseif args == 2
x = varargin{1};
y = varargin{2};
dy = [];
elseif args == 1
A = varargin{1};
[nr,nc]=size(A);
if all(nc!=[2,3])
error("wpolyfit expects vectors x,y,dy or matrix [x,y,dy]");
endif
dy = [];
if nc == 3, dy = A(:,3); endif
y = A(:,2);
x = A(:,1);
else
usage ("wpolyfit (x, y [, dy], n [, 'origin'])");
end
if (length(origin) == 0)
through_origin = 0;
elseif strcmp(origin,'origin')
through_origin = 1;
else
error ("wpolyfit: expected 'origin' but found '%s'", origin)
endif
if any(size (x) != size (y))
error ("wpolyfit: x and y must be vectors of the same size");
endif
if length(dy)>1 && length(y) != length(dy)
error ("wpolyfit: dy must be a vector the same length as y");
endif
if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == round (n)))
error ("wpolyfit: n must be a nonnegative integer");
endif
if nargout == 3
mu = [mean(x), std(x)];
x = (x - mu(1))/mu(2);
endif
k = length (x);
## observation matrix
if through_origin
## polynomial through the origin y = ax + bx^2 + cx^3 + ...
A = (x(:) * ones(1,n)) .^ (ones(k,1) * (n:-1:1));
else
## polynomial least squares y = a + bx + cx^2 + dx^3 + ...
A = (x(:) * ones (1, n+1)) .^ (ones (k, 1) * (n:-1:0));
endif
[p,s] = wsolve(A,y(:),dy(:));
if through_origin
p(n+1) = 0;
endif
if nargout == 0
good_fit = 1-chi2cdf(s.normr^2,s.df);
printf("Polynomial: %s [ p(chi^2>observed)=%.2f%% ]\n", polyout(p,'x'), good_fit*100);
plt(x,y,dy,p,s,'ci');
else
p_out = p';
endif
function plt(x,y,dy,p,s,varargin)
if iscomplex(p)
# XXX FIXME XXX how to plot complex valued functions?
# Maybe using hue for phase and saturation for magnitude
# e.g., Frank Farris (Santa Cruz University) has this:
# http://www.maa.org/pubs/amm_complements/complex.html
# Could also look at the book
# Visual Complex Analysis by Tristan Needham, Oxford Univ. Press
# but for now we punt
return
end
## decorate the graph
grid('on');
xlabel('abscissa X'); ylabel('data Y');
title('Least-squares Polynomial Fit with Error Bounds');
## draw fit with estimated error bounds
xf = linspace(min(x),max(x),150)';
[yf,dyf] = polyconf(p,xf,s,varargin{:});
plot(xf,yf+dyf,"g.;;", xf,yf-dyf,"g.;;", xf,yf,"g-;fit;");
## plot the data
hold on;
if (isempty(dy))
plot(x,y,"x;data;");
else
if isscalar(dy), dy = ones(size(y))*dy; end
errorbar (x, y, dy, "~;data;");
endif
hold off;
if strcmp(deblank(input('See residuals? [y,n] ','s')),'y')
clf;
if (isempty(dy))
plot(x,y-polyval(p,x),"x;data;");
else
errorbar(x,y-polyval(p,x),dy, '~;data;');
endif
hold on;
grid on;
ylabel('Residuals');
xlabel('abscissa X');
plot(xf,dyf,'g.;;',xf,-dyf,'g.;;');
hold off;
endif
%!demo % #1
%! x = linspace(0,4,20);
%! dy = (1+rand(size(x)))/2;
%! y = polyval([2,3,1],x) + dy.*randn(size(x));
%! wpolyfit(x,y,dy,2);
%!demo % #2
%! x = linspace(-i,+2i,20);
%! noise = ( randn(size(x)) + i*randn(size(x)) )/10;
%! P = [2-i,3,1+i];
%! y = polyval(P,x) + noise;
%! wpolyfit(x,y,2)
%!demo
%! pin = [3; -1; 2];
%! x = -3:0.1:3;
%! y = polyval (pin, x);
%!
%! ## Poisson weights
%! # dy = sqrt (abs (y));
%! ## Uniform weights in [0.5,1]
%! dy = 0.5 + 0.5 * rand (size (y));
%!
%! y = y + randn (size (y)) .* dy;
%! printf ("Original polynomial: %s\n", polyout (pin, 'x'));
%! wpolyfit (x, y, dy, length (pin)-1);
|