This file is indexed.

/usr/share/octave/packages/signal-1.3.0/fracshift.m is in octave-signal 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
## Copyright (C) 2008 Eric Chassande-Mottin, CNRS (France) <ecm@apc.univ-paris7.fr>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{y}, @var{h}] =} fracshift (@var{x}, @var{d})
## @deftypefnx {Function File} {@var{y} =} fracshift (@var{x}, @var{d}, @var{h})
## Shift the series @var{x} by a (possibly fractional) number of samples @var{d}.
## The interpolator @var{h} is either specified or either designed with a
## Kaiser-windowed sinecard.
## @seealso{circshift}
## @end deftypefn

## Ref [1] A. V. Oppenheim, R. W. Schafer and J. R. Buck,
## Discrete-time signal processing, Signal processing series,
## Prentice-Hall, 1999
##
## Ref [2] T.I. Laakso, V. Valimaki, M. Karjalainen and U.K. Laine
## Splitting the unit delay, IEEE Signal Processing Magazine,
## vol. 13, no. 1, pp 30--59 Jan 1996

function  [y, h] = fracshift( x, d, h )

  if nargchk(2,3,nargin)
    print_usage;
  endif;

  ## if the delay is an exact integer, use circshift
  if d==fix(d)
    y=circshift(x,d);
    return
  endif;

  ## filter design if required

  if (nargin < 4)

    ## properties of the interpolation filter

    log10_rejection = -3.0;
    stopband_cutoff_f = 1.0 / 2.0;
    roll_off_width = stopband_cutoff_f / 10;

    ## determine filter length
    ## use empirical formula from [1] Chap 7, Eq. (7.63) p 476

    rejection_dB = -20.0*log10_rejection;
    L = ceil((rejection_dB-8.0) / (28.714 * roll_off_width));

    ## ideal sinc filter

    t=(-L:L)';
    ideal_filter=2*stopband_cutoff_f*sinc(2*stopband_cutoff_f*(t-(d-fix(d))));

    ## determine parameter of Kaiser window
    ## use empirical formula from [1] Chap 7, Eq. (7.62) p 474

    if ((rejection_dB>=21) && (rejection_dB<=50))
      beta = 0.5842 * (rejection_dB-21.0)^0.4 + 0.07886 * (rejection_dB-21.0);
    elseif (rejection_dB>50)
      beta = 0.1102 * (rejection_dB-8.7);
    else
      beta = 0.0;
    endif

    ## apodize ideal (sincard) filter response

    m = 2*L;
    t = (0 : m)' - (d-fix(d));
    t = 2 * beta / m * sqrt (t .* (m - t));
    w = besseli (0, t) / besseli (0, beta);
    h = w.*ideal_filter;

  endif

  ## check if input is a row vector
  isrowvector=false;
  if ((rows(x)==1) && (columns(x)>1))
    x=x(:);
    isrowvector=true;
  endif

  ## check if filter is a vector
  if ~isvector(h)
    error("fracshift.m: the filter h should be a vector");
  endif

  Lx = length(x);
  Lh = length(h);
  L = ( Lh - 1 )/2.0;
  Ly = Lx;

  ## pre and postpad filter response
  hpad = prepad(h,Lh);
  offset = floor(L);
  hpad = postpad(hpad,Ly + offset);

  ## filtering
  xfilt = upfirdn(x,hpad,1,1);
  y = xfilt(offset+1:offset+Ly,:);

  y=circshift(y,fix(d));

  if isrowvector,
    y=y.';
  endif

endfunction

%!test
%! N=1024;
%! d=1.5;
%! t=(0:N-1)-N/2;
%! tt=t-d;
%! err=zeros(N/2,1);
%! for n = 0:N/2-1,
%!   phi0=2*pi*rand;
%!   f0=n/N;
%!   sigma=N/4;
%!   x=exp(-t'.^2/(2*sigma)).*sin(2*pi*f0*t' + phi0);
%!   [y,h]=fracshift(x,d);
%!   xx=exp(-tt'.^2/(2*sigma)).*sin(2*pi*f0*tt' + phi0);
%!   err(n+1)=max(abs(y-xx));
%! endfor;
%! rolloff=.1;
%! rejection=10^-3;
%! idx_inband=1:ceil((1-rolloff)*N/2)-1;
%! assert(max(err(idx_inband))<rejection);

%!test
%! N=1024;
%! d=7/6;
%! t=(0:N-1)-N/2;
%! tt=t-d;
%! err=zeros(N/2,1);
%! for n = 0:N/2-1,
%!   phi0=2*pi*rand;
%!   f0=n/N;
%!   sigma=N/4;
%!   x=exp(-t'.^2/(2*sigma)).*sin(2*pi*f0*t' + phi0);
%!   [y,h]=fracshift(x,d);
%!   xx=exp(-tt'.^2/(2*sigma)).*sin(2*pi*f0*tt' + phi0);
%!   err(n+1)=max(abs(y-xx));
%! endfor;
%! rolloff=.1;
%! rejection=10^-3;
%! idx_inband=1:ceil((1-rolloff)*N/2)-1;
%! assert(max(err(idx_inband))<rejection);

%!test
%! N=1024;
%! p=6;
%! q=7;
%! d1=64;
%! d2=d1*p/q;
%! t=128;
%! n=zeros(N,1);
%! n(N/2+(-t:t))=randn(2*t+1,1);
%! [b a]=butter(10,.25);
%! n=filter(b,a,n);
%! n1=fracshift(n,d1);
%! n1=resample(n1,p,q);
%! n2=resample(n,p,q);
%! n2=fracshift(n2,d2);
%! err=abs(n2-n1);
%! rejection=10^-3;
%! assert(max(err)<rejection);