/usr/share/octave/packages/signal-1.3.0/fracshift.m is in octave-signal 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | ## Copyright (C) 2008 Eric Chassande-Mottin, CNRS (France) <ecm@apc.univ-paris7.fr>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{y}, @var{h}] =} fracshift (@var{x}, @var{d})
## @deftypefnx {Function File} {@var{y} =} fracshift (@var{x}, @var{d}, @var{h})
## Shift the series @var{x} by a (possibly fractional) number of samples @var{d}.
## The interpolator @var{h} is either specified or either designed with a
## Kaiser-windowed sinecard.
## @seealso{circshift}
## @end deftypefn
## Ref [1] A. V. Oppenheim, R. W. Schafer and J. R. Buck,
## Discrete-time signal processing, Signal processing series,
## Prentice-Hall, 1999
##
## Ref [2] T.I. Laakso, V. Valimaki, M. Karjalainen and U.K. Laine
## Splitting the unit delay, IEEE Signal Processing Magazine,
## vol. 13, no. 1, pp 30--59 Jan 1996
function [y, h] = fracshift( x, d, h )
if nargchk(2,3,nargin)
print_usage;
endif;
## if the delay is an exact integer, use circshift
if d==fix(d)
y=circshift(x,d);
return
endif;
## filter design if required
if (nargin < 4)
## properties of the interpolation filter
log10_rejection = -3.0;
stopband_cutoff_f = 1.0 / 2.0;
roll_off_width = stopband_cutoff_f / 10;
## determine filter length
## use empirical formula from [1] Chap 7, Eq. (7.63) p 476
rejection_dB = -20.0*log10_rejection;
L = ceil((rejection_dB-8.0) / (28.714 * roll_off_width));
## ideal sinc filter
t=(-L:L)';
ideal_filter=2*stopband_cutoff_f*sinc(2*stopband_cutoff_f*(t-(d-fix(d))));
## determine parameter of Kaiser window
## use empirical formula from [1] Chap 7, Eq. (7.62) p 474
if ((rejection_dB>=21) && (rejection_dB<=50))
beta = 0.5842 * (rejection_dB-21.0)^0.4 + 0.07886 * (rejection_dB-21.0);
elseif (rejection_dB>50)
beta = 0.1102 * (rejection_dB-8.7);
else
beta = 0.0;
endif
## apodize ideal (sincard) filter response
m = 2*L;
t = (0 : m)' - (d-fix(d));
t = 2 * beta / m * sqrt (t .* (m - t));
w = besseli (0, t) / besseli (0, beta);
h = w.*ideal_filter;
endif
## check if input is a row vector
isrowvector=false;
if ((rows(x)==1) && (columns(x)>1))
x=x(:);
isrowvector=true;
endif
## check if filter is a vector
if ~isvector(h)
error("fracshift.m: the filter h should be a vector");
endif
Lx = length(x);
Lh = length(h);
L = ( Lh - 1 )/2.0;
Ly = Lx;
## pre and postpad filter response
hpad = prepad(h,Lh);
offset = floor(L);
hpad = postpad(hpad,Ly + offset);
## filtering
xfilt = upfirdn(x,hpad,1,1);
y = xfilt(offset+1:offset+Ly,:);
y=circshift(y,fix(d));
if isrowvector,
y=y.';
endif
endfunction
%!test
%! N=1024;
%! d=1.5;
%! t=(0:N-1)-N/2;
%! tt=t-d;
%! err=zeros(N/2,1);
%! for n = 0:N/2-1,
%! phi0=2*pi*rand;
%! f0=n/N;
%! sigma=N/4;
%! x=exp(-t'.^2/(2*sigma)).*sin(2*pi*f0*t' + phi0);
%! [y,h]=fracshift(x,d);
%! xx=exp(-tt'.^2/(2*sigma)).*sin(2*pi*f0*tt' + phi0);
%! err(n+1)=max(abs(y-xx));
%! endfor;
%! rolloff=.1;
%! rejection=10^-3;
%! idx_inband=1:ceil((1-rolloff)*N/2)-1;
%! assert(max(err(idx_inband))<rejection);
%!test
%! N=1024;
%! d=7/6;
%! t=(0:N-1)-N/2;
%! tt=t-d;
%! err=zeros(N/2,1);
%! for n = 0:N/2-1,
%! phi0=2*pi*rand;
%! f0=n/N;
%! sigma=N/4;
%! x=exp(-t'.^2/(2*sigma)).*sin(2*pi*f0*t' + phi0);
%! [y,h]=fracshift(x,d);
%! xx=exp(-tt'.^2/(2*sigma)).*sin(2*pi*f0*tt' + phi0);
%! err(n+1)=max(abs(y-xx));
%! endfor;
%! rolloff=.1;
%! rejection=10^-3;
%! idx_inband=1:ceil((1-rolloff)*N/2)-1;
%! assert(max(err(idx_inband))<rejection);
%!test
%! N=1024;
%! p=6;
%! q=7;
%! d1=64;
%! d2=d1*p/q;
%! t=128;
%! n=zeros(N,1);
%! n(N/2+(-t:t))=randn(2*t+1,1);
%! [b a]=butter(10,.25);
%! n=filter(b,a,n);
%! n1=fracshift(n,d1);
%! n1=resample(n1,p,q);
%! n2=resample(n,p,q);
%! n2=fracshift(n2,d2);
%! err=abs(n2-n1);
%! rejection=10^-3;
%! assert(max(err)<rejection);
|