/usr/share/octave/packages/signal-1.3.0/fwhm.m is in octave-signal 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | ## Author: Petr Mikulik (2009)
## This program is granted to the public domain.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{f} =} fwhm (@var{y})
## @deftypefnx {Function File} {@var{f} =} fwhm (@var{x}, @var{y})
## @deftypefnx {Function File} {@var{f} =} fwhm (@dots{}, "zero")
## @deftypefnx {Function File} {@var{f} =} fwhm (@dots{}, "min")
## @deftypefnx {Function File} {@var{f} =} fwhm (@dots{}, "alevel", @var{level})
## @deftypefnx {Function File} {@var{f} =} fwhm (@dots{}, "rlevel", @var{level})
##
## Compute peak full-width at half maximum (FWHM) or at another level of peak
## maximum for vector or matrix data @var{y}, optionally sampled as @math{y(x)}.
## If @var{y} is a matrix, return FWHM for each column as a row vector.
##
## The default option "zero" computes fwhm at half maximum, i.e.
## @math{0.5*max(y)}. The option "min" computes fwhm at the middle curve, i.e.
## @math{0.5*(min(y)+max(y))}.
##
## The option "rlevel" computes full-width at the given relative level of peak
## profile, i.e. at @math{rlevel*max(y)} or @math{rlevel*(min(y)+max(y))},
## respectively. For example, @code{fwhm (@dots{}, "rlevel", 0.1)} computes
## full width at 10 % of peak maximum with respect to zero or minimum; FWHM is
## equivalent to @code{fwhm(@dots{}, "rlevel", 0.5)}.
##
## The option "alevel" computes full-width at the given absolute level of
## @var{y}.
##
## Return 0 if FWHM does not exist (e.g. monotonous function or the function
## does not cut horizontal line at @math{rlevel*max(y)} or
## @math{rlevel*(max(y)+min(y))} or alevel, respectively).
##
## @end deftypefn
function myfwhm = fwhm (y, varargin)
if nargin < 1 || nargin > 5
print_usage;
endif
opt = 'zero';
is_alevel = 0;
level = 0.5;
if nargin==1
x = 1:length(y);
else
if ischar(varargin{1})
x = 1:length(y);
k = 1;
else
x = y;
y = varargin{1};
k = 2;
endif
while k <= length(varargin)
if strcmp(varargin{k}, 'alevel')
is_alevel = 1;
k = k+1;
if k > length(varargin)
error('option "alevel" requires an argument');
endif
level = varargin{k};
if ~isreal(level) || length(level) > 1
error('argument of "alevel" must be real number');
endif
k = k+1;
break
endif
if any(strcmp(varargin{k}, {'zero', 'min'}))
opt = varargin{k};
k = k+1;
endif
if k > length(varargin) break; endif
if strcmp(varargin{k}, 'rlevel')
k = k+1;
if k > length(varargin)
error('option "rlevel" requires an argument');
endif
level = varargin{k};
if ~isreal(level) || length(level) > 1 || level(1) < 0 || level(:) > 1
error('argument of "rlevel" must be real number from 0 to 1 (it is 0.5 for fwhm)');
endif
k = k+1;
break
endif
break
endwhile
if k ~= length(varargin)+1
error('fwhm: extraneous option(s)');
endif
endif
## test the y matrix
[nr, nc] = size(y);
if (nr == 1 && nc > 1)
y = y'; nr = nc; nc = 1;
endif
if length(x) ~= nr
error('dimension of input arguments do not match');
endif
## Shift matrix columns so that y(+-xfwhm) = 0:
if is_alevel
## case: full-width at the given absolute position
y = y - level;
else
if strcmp(opt, 'zero')
## case: full-width at half maximum
y = y - level * repmat(max(y), nr, 1);
else
## case: full-width above background
y = y - level * repmat((max(y) + min(y)), nr, 1);
endif
endif
## Trial for a "vectorizing" calculation of fwhm (i.e. all
## columns in one shot):
## myfwhm = zeros(1,nc); # default: 0 for fwhm undefined
## ind = find (y(1:end-1, :) .* y(2:end, :) <= 0);
## [r1,c1] = ind2sub(size(y), ind);
## ... difficult to proceed further.
## Thus calculate fwhm for each column independently:
myfwhm = zeros(1,nc); # default: 0 for fwhm undefined
for n=1:nc
yy = y(:, n);
ind = find((yy(1:end-1) .* yy(2:end)) <= 0);
if length(ind) >= 2 && yy(ind(1)) > 0 # must start ascending
ind = ind(2:end);
endif
[mx, imax] = max(yy); # protection against constant or (almost) monotonous functions
if length(ind) >= 2 && imax >= ind(1) && imax <= ind(end)
ind1 = ind(1);
ind2 = ind1 + 1;
xx1 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
ind1 = ind(end);
ind2 = ind1 + 1;
xx2 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
myfwhm(n) = xx2 - xx1;
endif
endfor
endfunction
%!test
%! x=-pi:0.001:pi; y=cos(x);
%! assert( abs(fwhm(x, y) - 2*pi/3) < 0.01 );
%!
%!test
%! assert( fwhm(-10:10) == 0 && fwhm(ones(1,50)) == 0 );
%!
%!test
%! x=-20:1:20;
%! y1=-4+zeros(size(x)); y1(4:10)=8;
%! y2=-2+zeros(size(x)); y2(4:11)=2;
%! y3= 2+zeros(size(x)); y3(5:13)=10;
%! assert( max(abs(fwhm(x, [y1;y2;y3]') - [20.0/3,7.5,9.25])) < 0.01 );
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y)-0.75)<0.001 && abs(fwhm(x,y,'zero')-0.75)<0.001 && abs(fwhm(x,y,'min')-1.0)<0.001);
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'zero', 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'min', 'rlevel', 0.1)-1.40)<0.001);
%!
%!test
%! x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'alevel', 2.5)-0.25)<0.001 && abs(fwhm(x,y,'alevel', -0.5)-1.75)<0.001);
%!
%!test
%! x=-10:10; assert( fwhm(x.*x) == 0 );
%!
%!test
%! x=-5:5; y=18-x.*x; assert( abs(fwhm(y)-6.0) < 0.001 && abs(fwhm(x,y,'zero')-6.0) < 0.001 && abs(fwhm(x,y,'min')-7.0 ) < 0.001);
|