This file is indexed.

/usr/share/octave/packages/signal-1.3.0/idct.m is in octave-signal 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
## Copyright (C) 2001 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{y} =} idct (@var{x})
## @deftypefnx {Function File} {@var{y} =} idct (@var{x}, @var{n})
## Compute the inverse discrete cosine transform of @var{x}.  If @var{n} is
## given, then @var{x} is padded or trimmed to length @var{n} before computing
## the transform.  If @var{x} is a matrix, compute the transform along the
## columns of the the matrix.  The transform is faster if @var{x} is
## real-valued and even length.
##
## The inverse discrete cosine transform @var{x} can be defined as follows:
##
## @example
##          N-1
##   x[n] = sum w(k) X[k] cos (pi (2n+1) k / 2N ),  n = 0, ..., N-1
##          k=0
## @end example
##
## with w(0) = sqrt(1/N) and w(k) = sqrt(2/N), k = 1, ..., N-1
##
## @seealso{dct, dct2, idct2, dctmtx}
## @end deftypefn

function y = idct (x, n)

  if (nargin < 1 || nargin > 2)
    print_usage;
  endif

  realx = isreal(x);
  transpose = (rows (x) == 1);

  if transpose, x = x (:); endif
  [nr, nc] = size (x);
  if nargin == 1
    n = nr;
  elseif n > nr
    x = [ x ; zeros(n-nr,nc) ];
  elseif n < nr
    x (n-nr+1 : n, :) = [];
  endif

  if ( realx && rem (n, 2) == 0 )
    w = [ sqrt(n/4); sqrt(n/2)*exp((1i*pi/2/n)*[1:n-1]') ] * ones (1, nc);
    y = ifft (w .* x);
    y([1:2:n, n:-2:1], :) = 2*real(y);
  elseif n == 1
    y = x;
  else
    ## reverse the steps of dct using inverse operations
    ## 1. undo post-fft scaling
    w = [ sqrt(4*n); sqrt(2*n)*exp((1i*pi/2/n)*[1:n-1]') ] * ones (1, nc);
    y = x.*w;

    ## 2. reconstruct fft result and invert it
    w = exp(-1i*pi*[n-1:-1:1]'/n) * ones(1,nc);
    y = ifft ( [ y ; zeros(1,nc); y(n:-1:2,:).*w ] );

    ## 3. keep only the original data; toss the reversed copy
    y = y(1:n, :);
    if (realx) y = real (y); endif
  endif
  if transpose, y = y.'; endif

endfunction