/usr/share/octave/packages/signal-1.3.0/invfreq.m is in octave-signal 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | ## Copyright (C) 1986, 2000, 2003 Julius O. Smith III <jos@ccrma.stanford.edu>
## Copyright (C) 2007 Rolf Schirmacher <Rolf.Schirmacher@MuellerBBM.de>
## Copyright (C) 2003 Andrew Fitting
## Copyright (C) 2010 Pascal Dupuis <Pascal.Dupuis@uclouvain.be>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## usage: [B,A] = invfreq(H,F,nB,nA)
## [B,A] = invfreq(H,F,nB,nA,W)
## [B,A] = invfreq(H,F,nB,nA,W,[],[],plane)
## [B,A] = invfreq(H,F,nB,nA,W,iter,tol,plane)
##
## Fit filter B(z)/A(z) or B(s)/A(s) to complex frequency response at
## frequency points F. A and B are real polynomial coefficients of order
## nA and nB respectively. Optionally, the fit-errors can be weighted vs
## frequency according to the weights W. Also, the transform plane can be
## specified as either 's' for continuous time or 'z' for discrete time. 'z'
## is chosen by default. Eventually, Steiglitz-McBride iterations will be
## specified by iter and tol.
##
## H: desired complex frequency response
## It is assumed that A and B are real polynomials, hence H is one-sided.
## F: vector of frequency samples in radians
## nA: order of denominator polynomial A
## nB: order of numerator polynomial B
## plane='z': F on unit circle (discrete-time spectra, z-plane design)
## plane='s': F on jw axis (continuous-time spectra, s-plane design)
## H(k) = spectral samples of filter frequency response at points zk,
## where zk=exp(sqrt(-1)*F(k)) when plane='z' (F(k) in [0,.5])
## and zk=(sqrt(-1)*F(k)) when plane='s' (F(k) nonnegative)
## Example:
## [B,A] = butter(12,1/4);
## [H,w] = freqz(B,A,128);
## [Bh,Ah] = invfreq(H,F,4,4);
## Hh = freqz(Bh,Ah);
## disp(sprintf('||frequency response error|| = %f',norm(H-Hh)));
##
## References: J. O. Smith, "Techniques for Digital Filter Design and System
## Identification with Application to the Violin, Ph.D. Dissertation,
## Elec. Eng. Dept., Stanford University, June 1983, page 50; or,
##
## http://ccrma.stanford.edu/~jos/filters/FFT_Based_Equation_Error_Method.html
## FIXME: implement Steiglitz-McBride iterations
## FIXME: improve numerical stability for high order filters (matlab is a bit better)
## FIXME: modify to accept more argument configurations
function [B, A, SigN] = invfreq(H, F, nB, nA, W, iter, tol, tr, plane, varargin)
if length(nB) > 1, zB = nB(2); nB = nB(1); else zB = 0; endif
n = max(nA, nB);
m = n+1; mA = nA+1; mB = nB+1;
nF = length(F);
if nF ~= length(H), disp('invfreqz: length of H and F must be the same'); endif
if nargin < 5 || isempty(W), W = ones(1, nF); endif
if nargin < 6, iter = []; endif
if nargin < 7 tol = []; endif
if nargin < 8 || isempty(tr), tr = ''; endif
if nargin < 9, plane = 'z'; endif
if nargin < 10, varargin = {}; endif
if iter~=[], disp('no implementation for iter yet'),endif
if tol ~=[], disp('no implementation for tol yet'),endif
if (plane ~= 'z' && plane ~= 's'), disp('invfreqz: Error in plane argument'), endif
[reg, prop ] = parseparams(varargin);
## should we normalise freqs to avoid matrices with rank deficiency ?
norm = false;
## by default, use Ordinary Least Square to solve normal equations
method = 'LS';
if length(prop) > 0
indi = 1; while indi <= length(prop)
switch prop{indi}
case 'norm'
if indi < length(prop) && ~ischar(prop{indi+1}),
norm = logical(prop{indi+1});
prop(indi:indi+1) = [];
continue
else
norm = true; prop(indi) = [];
continue
endif
case 'method'
if indi < length(prop) && ischar(prop{indi+1}),
method = prop{indi+1};
prop(indi:indi+1) = [];
continue
else
error('invfreq.m: incorrect/missing method argument');
endif
otherwise # FIXME: just skip it for now
disp(sprintf("Ignoring unkown argument %s", varargin{indi}));
indi = indi + 1;
endswitch
endwhile
endif
Ruu = zeros(mB, mB); Ryy = zeros(nA, nA); Ryu = zeros(nA, mB);
Pu = zeros(mB, 1); Py = zeros(nA,1);
if strcmp(tr,'trace')
disp(' ')
disp('Computing nonuniformly sampled, equation-error, rational filter.');
disp(['plane = ',plane]);
disp(' ')
endif
s = sqrt(-1)*F;
switch plane
case 'z'
if max(F) > pi || min(F) < 0
disp('hey, you frequency is outside the range 0 to pi, making my own')
F = linspace(0, pi, length(H));
s = sqrt(-1)*F;
endif
s = exp(-s);
case 's'
if max(F) > 1e6 && n > 5,
if ~norm,
disp('Be carefull, there are risks of generating singular matrices');
disp('Call invfreqs as (..., "norm", true) to avoid it');
else
Fmax = max(F); s = sqrt(-1)*F/Fmax;
endif
endif
endswitch
for k=1:nF,
Zk = (s(k).^[0:n]).';
Hk = H(k);
aHks = Hk*conj(Hk);
Rk = (W(k)*Zk)*Zk';
rRk = real(Rk);
Ruu = Ruu + rRk(1:mB, 1:mB);
Ryy = Ryy + aHks*rRk(2:mA, 2:mA);
Ryu = Ryu + real(Hk*Rk(2:mA, 1:mB));
Pu = Pu + W(k)*real(conj(Hk)*Zk(1:mB));
Py = Py + (W(k)*aHks)*real(Zk(2:mA));
endfor
Rr = ones(length(s), mB+nA); Zk = s;
for k = 1:min(nA, nB),
Rr(:, 1+k) = Zk;
Rr(:, mB+k) = -Zk.*H;
Zk = Zk.*s;
endfor
for k = 1+min(nA, nB):max(nA, nB)-1,
if k <= nB, Rr(:, 1+k) = Zk; endif
if k <= nA, Rr(:, mB+k) = -Zk.*H; endif
Zk = Zk.*s;
endfor
k = k+1;
if k <= nB, Rr(:, 1+k) = Zk; endif
if k <= nA, Rr(:, mB+k) = -Zk.*H; endif
## complex to real equation system -- this ensures real solution
Rr = Rr(:, 1+zB:end);
Rr = [real(Rr); imag(Rr)]; Pr = [real(H(:)); imag(H(:))];
## normal equations -- keep for ref
## Rn= [Ruu(1+zB:mB, 1+zB:mB), -Ryu(:, 1+zB:mB)'; -Ryu(:, 1+zB:mB), Ryy];
## Pn= [Pu(1+zB:mB); -Py];
switch method
case {'ls' 'LS'}
## avoid scaling errors with Theta = R\P;
## [Q, R] = qr([Rn Pn]); Theta = R(1:end, 1:end-1)\R(1:end, end);
[Q, R] = qr([Rr Pr], 0); Theta = R(1:end-1, 1:end-1)\R(1:end-1, end);
## SigN = R(end, end-1);
SigN = R(end, end);
case {'tls' 'TLS'}
## [U, S, V] = svd([Rn Pn]);
## SigN = S(end, end-1);
## Theta = -V(1:end-1, end)/V(end, end);
[U, S, V] = svd([Rr Pr], 0);
SigN = S(end, end);
Theta = -V(1:end-1, end)/V(end, end);
case {'mls' 'MLS' 'qr' 'QR'}
## [Q, R] = qr([Rn Pn], 0);
## solve the noised part -- DO NOT USE ECONOMY SIZE !
## [U, S, V] = svd(R(nA+1:end, nA+1:end));
## SigN = S(end, end-1);
## Theta = -V(1:end-1, end)/V(end, end);
## unnoised part -- remove B contribution and back-substitute
## Theta = [R(1:nA, 1:nA)\(R(1:nA, end) - R(1:nA, nA+1:end-1)*Theta)
## Theta];
## solve the noised part -- economy size OK as #rows > #columns
[Q, R] = qr([Rr Pr], 0);
eB = mB-zB; sA = eB+1;
[U, S, V] = svd(R(sA:end, sA:end));
## noised (A) coefficients
Theta = -V(1:end-1, end)/V(end, end);
## unnoised (B) part -- remove A contribution and back-substitute
Theta = [R(1:eB, 1:eB)\(R(1:eB, end) - R(1:eB, sA:end-1)*Theta)
Theta];
SigN = S(end, end);
otherwise
error("invfreq: unknown method %s", method);
endswitch
B = [zeros(zB, 1); Theta(1:mB-zB)].';
A = [1; Theta(mB-zB+(1:nA))].';
if strcmp(plane,'s')
B = B(mB:-1:1);
A = A(mA:-1:1);
if norm, # Frequencies were normalised -- unscale coefficients
Zk = Fmax.^[n:-1:0].';
for k = nB:-1:1+zB, B(k) = B(k)/Zk(k); endfor
for k = nA:-1:1, A(k) = A(k)/Zk(k); endfor
endif
endif
endfunction
%!demo
%! order = 6; # order of test filter
%! fc = 1/2; # sampling rate / 4
%! n = 128; # frequency grid size
%! [B, A] = butter(order,fc);
%! [H, w] = freqz(B,A,n);
%! [Bh, Ah] = invfreq(H,w,order,order);
%! [Hh, wh] = freqz(Bh,Ah,n);
%! plot(w,[abs(H), abs(Hh)])
%! xlabel("Frequency (rad/sample)");
%! ylabel("Magnitude");
%! legend('Original','Measured');
%! err = norm(H-Hh);
%! disp(sprintf('L2 norm of frequency response error = %f',err));
|