This file is indexed.

/usr/share/octave/packages/symbolic-1.1.0/doc-cache is in octave-symbolic 1.1.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Created by Octave 3.8.2, Sat Sep 27 14:04:35 2014 UTC <root@rama>
# name: cache
# type: cell
# rows: 3
# columns: 5
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
findsym


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 529
 -- Function File: VARS = findsym (F, N)
     Find symbols in expression F and return them comma-separated in
     string VARS.  The symbols are sorted in alphabetic order.  If N is
     specified, the N symbols closest to "x" are returned.

     Example:
          symbols
          x     = sym ("x");
          y     = sym ("y");
          f     = x^2+3*x*y-y^2;
          vars  = findsym (f);
          vars2 = findsym (f,1);

     This is intended for m****b compatibility, calls findsymbols().

     See also: findsymbols.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Find symbols in expression F and return them comma-separated in string
VARS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
poly2sym


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 602
 -- Function File: P = poly2sym (C, X)
     Creates a symbolic polynomial expression P with coefficients C.  If
     P is not specified, the free variable is set to sym("x").  C may be
     a vector or a cell-array of symbols.  X may be a symbolic
     expression or a string.  The coefficients correspond to decreasing
     exponent of the free variable.

     Example:
          symbols
          x = sym("x");
          y = sym("y");
          p = poly2sym ([2,5,-3]);         # p = 2*x^2+5*x-3
          c = poly2sym ({2*y,5,-3},x);     # p = 2*y*x^2+5*x-3

     See also: sym2poly,polyval,roots.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Creates a symbolic polynomial expression P with coefficients C.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
splot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
 -- Function File: splot( F ,X,RANGE)
     Plot a symbolic function f(x) over range.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Plot a symbolic function f(x) over range.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sym2poly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 782
 -- Function File: C = sym2poly (P, X)
     Returns the coefficients of the symbolic polynomial expression P as
     a vector.  If there is only one free variable in P the coefficient
     vector C is a plain numeric vector.  If there is more than one free
     variable in P, a second argument X specifies the free variable and
     the function returns a cell vector of symbolic expressions.  The
     coefficients correspond to decreasing exponent of the free
     variable.

     Example:
          symbols
          x = sym("x");
          y = sym("y");
          c = sym2poly (x^2+3*x-4);    # c = [1,3,-4]
          c = sym2poly (x^2+y*x,x);    # c = {sym("1"),y,sym("0.0")}

     If P is not a polynomial the result has no warranty.

     See also: poly2sym,polyval,roots.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Returns the coefficients of the symbolic polynomial expression P as a
vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
symfsolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1285
 -- Function File: [X, INF, MSG] = symfsolve (...)
     Solve a set of symbolic equations using 'fsolve'.  There are a
     number of ways in which this function can be called.

     This solves for all free variables, initial values set to 0:

          symbols
          x=sym("x");   y=sym("y");
          f=x^2+3*x-1;  g=x*y-y^2+3;
          a = symfsolve(f,g);

     This solves for x and y and sets the initial values to 1 and 5
     respectively:

          a = symfsolve(f,g,x,1,y,5);
          a = symfsolve(f,g,{x==1,y==5});
          a = symfsolve(f,g,[1 5]);

     In all the previous examples vector a holds the results: x=a(1),
     y=a(2).  If initial conditions are specified with variables, the
     latter determine output order:

          a = symfsolve(f,g,{y==1,x==2});  # here y=a(1), x=a(2)

     The system of equations to solve for can be given as separate
     arguments or as a single cell-array:

          a = symfsolve({f,g},{y==1,x==2});  # here y=a(1), x=a(2)

     If the variables are not specified explicitly with the initial
     conditions, they are placed in alphabetic order.  The system of
     equations can be comma- separated or given in a cell-array.  The
     return-values are those of fsolve; X holds the found roots.

See also: fsolve.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Solve a set of symbolic equations using 'fsolve'.