This file is indexed.

/usr/share/octave/packages/symbolic-1.1.0/sym2poly.m is in octave-symbolic 1.1.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
## Copyright (C) 2003 Willem J. Atsma <watsma@users.sf.net>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 2, or (at your option) any later version.
##
## This software is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with this software; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{c} =} sym2poly (@var{p}, @var{x})
## Returns the coefficients of the symbolic polynomial expression @var{p}
## as a vector. If there is only one free variable in @var{p} the
## coefficient vector @var{c} is a plain numeric vector. If there is more
## than one free variable in @var{p}, a second argument @var{x} specifies the
## free variable and the function returns a cell vector of symbolic expressions.
## The coefficients correspond to decreasing exponent of the free variable.
##
## Example:
## @example
## symbols
## x = sym("x");
## y = sym("y");
## c = sym2poly (x^2+3*x-4);    # c = [1,3,-4]
## c = sym2poly (x^2+y*x,x);    # c = @{sym("1"),y,sym("0.0")@}
## @end example
##
## If @var{p} is not a polynomial the result has no warranty.
##
## @seealso{poly2sym,polyval,roots}
## @end deftypefn

## Created: 18 April 2003
## Changed: 25 April 2003
##    Removed the use of differentiate to get to coefficients - round-off
##     errors cause problems. Now using newly created sumterms().
## Changed: 6 May 2003
##    Removed the attempt to use ldegree(), degree() and coeff() - results
##     with these are inconsistent.

function c = sym2poly(p,x)

  BADPOLY_COEFF_LIMIT = 500;

  if is_vpa(p)
    ## polynomial is one vpa number
    c = to_double(p);
    if length(c)!=1
      error("Argument is not a polynomial.");
    endif
    return
  endif

  if !is_ex(p)
    error("Argument has to be a symbolic expression.")
  endif

  pvars = findsymbols(p);
  if isempty(pvars)
    ## It is possible that we get an expression without any symbols.
    c = to_double(p);
    return;
  endif
  nvars = length(pvars); 

  if nvars>1 && exist("x")!=1
    error("Symbolic expression has more than 1 free variable; no variable specified.")
  elseif exist("x")!=1
    x = pvars{1};
  endif

  p = expand(p);

  ## GiNaC has commands to access coefficients directly, but in octave this often
  ## does not work, because for example x^2 typed in octave results in a 
  ## non-integer power in GiNaC: x^2.0 .

  [num,den] = numden(p);
  tmp = findsymbols(den);
  for i=1:length(tmp)
    if tmp{i}==x
      error("Symbolic expression is a ratio of polynomials.")
    endif
  endfor

  p = expand(p);
  p_terms = sumterms(p);
  ## if this is well behaved, I can find the coefficients by dividing with x
  c_ex = cell;
  for i=1:length(p_terms)
    tmp = p_terms{i};
    for j=1:BADPOLY_COEFF_LIMIT
      if disp(differentiate(tmp,x))=="0"
        break;
      endif
      tmp = tmp/x;
    endfor
    if j==BADPOLY_COEFF_LIMIT
      printf("Please examine your code or adjust this function.\n");
      printf("This error may occur because the passed expression is not a polynomial.\n");
      error("Reached the set limit (%d) for the number of coefficients.",BADPOLY_COEFF_LIMIT)
    endif
    if (length(c_ex)<j) || isempty(c_ex{j})
      c_ex(j)=tmp;
    else
      c_ex(j) = c_ex{j}+tmp;
    endif
  endfor
  order = length(c_ex)-1;

  all_numeric = true;
  for i=1:(order+1)
    if isempty(c_ex{i})
      c_ex(i) = vpa(0);
    endif
    cvar=findsymbols(c_ex{i});
    ncvar = length(cvar);
    if ncvar
      all_numeric=false;
      for j=1:ncvar
        if disp(cvar{j})==disp(x)
          printf("Possibly this error occurs because two symbols with the same name\n");
          printf("are different to GiNaC. Make sure the free variable exists as a\n");
          printf("symbol in your workspace.\n");
          error("The symbolic expression is not a polynomial.")
        endif
      endfor
    endif
  endfor

  c_ex = c_ex(end:-1: 1);

  if all_numeric
    for i=1:(order+1)
      c(1,i)=to_double(c_ex{i});
    endfor
  else
    c = c_ex;
  endif

endfunction

%!shared x, y
%! symbols
%! x = sym ("x"); y = sym ("y");
%!assert (sym2poly (x^2+3*x-4), [1, 3, -4]);
%!assert (disp (sym2poly (x^2+y*x, x)), disp ({sym("1"), y, sym("0.0")}))