This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/geometry.py is in pyfai 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/kif/pyFAI
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "29/09/2014"
__status__ = "production"
__docformat__ = 'restructuredtext'

import logging
from numpy import radians, degrees, arccos, arctan2, sin, cos, sqrt
import numpy
import os
import threading
import time
import types

from . import detectors
from . import units


logger = logging.getLogger("pyFAI.geometry")


try:
    from . import _geometry
except ImportError:
    _geometry = None

try:
    from . import bilinear
except ImportError:
    bilinear = None


try:
    from .fastcrc import crc32
except ImportError:
    from zlib import crc32


class Geometry(object):
    """
    This class is an azimuthal integrator based on P. Boesecke's geometry and
    histogram algorithm by Manolo S. del Rio and V.A Sole

    Detector is assumed to be corrected from "raster orientation" effect.
    It is not addressed here but rather in the Detector object or at read time.
    Considering there is no tilt:

    - Detector fast dimension (dim2) is supposed to be horizontal
      (dimension X of the image)

    - Detector slow dimension (dim1) is supposed to be vertical, upwards
      (dimension Y of the image)

    - The third dimension is chose such as the referential is
      orthonormal, so dim3 is along incoming X-ray beam


    Demonstration of the equation done using Mathematica.
    -----------------------------------------------------

    Axis 1 is along first dimension of detector (when not tilted),
    this is the slow dimension of the image array in C or Y
    x1={1,0,0}

    Axis 2 is along second dimension of detector (when not tilted),
    this is the fast dimension of the image in C or X
    x2={0,1,0}

    Axis 3 is along the incident X-Ray beam
    x3={0,0,1}

    We define the 3 rotation around axis 1, 2 and 3:

    rotM1 = RotationMatrix[rot1,x1] =  {{1,0,0},{0,cos[rot1],-sin[rot1]},{0,sin[rot1],cos[rot1]}}
    rotM2 =  RotationMatrix[rot2,x2] = {{cos[rot2],0,sin[rot2]},{0,1,0},{-sin[rot2],0,cos[rot2]}}
    rotM3 =  RotationMatrix[rot3,x3] = {{cos[rot3],-sin[rot3],0},{sin[rot3],cos[rot3],0},{0,0,1}}

    Rotations of the detector are applied first Rot around axis 1,
    then axis 2 and finally around axis 3:

    R = rotM3.rotM2.rotM1

    R = {{cos[rot2] cos[rot3],cos[rot3] sin[rot1] sin[rot2]-cos[rot1] sin[rot3],cos[rot1] cos[rot3] sin[rot2]+sin[rot1] sin[rot3]},
          {cos[rot2] sin[rot3],cos[rot1] cos[rot3]+sin[rot1] sin[rot2] sin[rot3],-cos[rot3] sin[rot1]+cos[rot1] sin[rot2] sin[rot3]},
          {-sin[rot2],cos[rot2] sin[rot1],cos[rot1] cos[rot2]}}

    In Python notation:

    R.x1 = [cos(rot2)*cos(rot3),cos(rot2)*sin(rot3),-sin(rot2)]

    R.x2 = [cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3),cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3), cos(rot2)*sin(rot1)]

    R.x3 = [cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3),-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3), cos(rot1)*cos(rot2)]

    * Coordinates of the Point of Normal Incidence:

      PONI = R.{0,0,L}

      PONI = [L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)),
                   L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)),L*cos(rot1)*cos(rot2)]

    * Any pixel on detector plan at coordinate (d1, d2) in
      meters. Detector is at z=L

      P={d1,d2,L}

      R.P = [t1, t2, t3]
      t1 = R.P.x1 = d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) + L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))
      t2 = R.P.x2 = d1*cos(rot2)*sin(rot3)  + d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3)) + L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3))
      t3 = R.P.x3 = d2*cos(rot2)*sin(rot1) - d1*sin(rot2) + L*cos(rot1)*cos(rot2)

    * Distance sample (origin) to detector point (d1,d2)

      |R.P| = sqrt(pow(Abs(L*cos(rot1)*cos(rot2) + d2*cos(rot2)*sin(rot1) - d1*sin(rot2)),2) +
                        pow(Abs(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) +
                        L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))),2) +
                        pow(Abs(d1*cos(rot2)*sin(rot3) + L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +
                        d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))),2))

    *  cos(2theta) is defined as (R.P component along x3) over the distance from origin to data point |R.P|

    tth = ArcCos [-(R.P).x3/|R.P|]

    tth = Arccos((-(L*cos(rot1)*cos(rot2)) - d2*cos(rot2)*sin(rot1) + d1*sin(rot2))/
                        sqrt(pow(Abs(L*cos(rot1)*cos(rot2) + d2*cos(rot2)*sin(rot1) - d1*sin(rot2)),2) +
                          pow(Abs(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) +
                         L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))),2) +
                          pow(Abs(d1*cos(rot2)*sin(rot3) + L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +
                         d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))),2)))

    * tan(2theta) is defined as sqrt(t1**2 + t2**2) / t3

    tth = ArcTan2 [sqrt(t1**2 + t2**2) , t3 ]

    Getting 2theta from it's tangeant seems both more precise (around
    beam stop very far from sample) and faster by about 25% Currently
    there is a swich in the method to follow one path or the other.

    * Tangeant of angle chi is defined as (R.P component along x1)
      over (R.P component along x2). Arctan2 should be used in actual
      calculation

     chi = ArcTan[((R.P).x1) / ((R.P).x2)]

     chi = ArcTan2(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) +
                            L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)),
                          d1*cos(rot2)*sin(rot3) + L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +
                            d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3)))

    """

    def __init__(self, dist=1, poni1=0, poni2=0, rot1=0, rot2=0, rot3=0,
                 pixel1=None, pixel2=None, splineFile=None, detector=None, wavelength=None):
        """
        @param dist: distance sample - detector plan (orthogonal distance, not along the beam), in meter.
        @param poni1: coordinate of the point of normal incidence along the detector's first dimension, in meter
        @param poni2: coordinate of the point of normal incidence along the detector's second dimension, in meter
        @param rot1: first rotation from sample ref to detector's ref, in radians
        @param rot2: second rotation from sample ref to detector's ref, in radians
        @param rot3: third rotation from sample ref to detector's ref, in radians
        @param pixel1: pixel size of the fist dimension of the detector,  in meter
        @param pixel2: pixel size of the second dimension of the detector,  in meter
        @param splineFile: file containing the geometric distortion of the detector. Overrides the pixel size.
        """
        self._dist = dist
        self._poni1 = poni1
        self._poni2 = poni2
        self._rot1 = rot1
        self._rot2 = rot2
        self._rot3 = rot3
        self.param = [self._dist, self._poni1, self._poni2,
                      self._rot1, self._rot2, self._rot3]
        self.chiDiscAtPi = True  # chi discontinuity (radians), pi by default
        self._ttha = None
        self._dttha = None
        self._dssa = None
        self._dssa_crc = None  # checksum associated with _dssa
        self._dssa_order = 3  # by default we correct for 1/cos(2th), fit2d corrects for 1/cos^3(2th)
        self._chia = None
        self._dchia = None
        self._qa = None
        self._dqa = None
        self._ra = None
        self._dra = None
        self._corner4Da = None
        self._corner4Dqa = None
        self._corner4Dra = None
        self._wavelength = wavelength
        self._oversampling = None
        self._correct_solid_angle_for_spline = True
        self._sem = threading.Semaphore()
        self._polarization_factor = 0
        self._polarization_axis_offset = 0
        self._polarization = None
        self._polarization_crc = None  # checksum associated with _polarization
        self._cosa = None  # cosine of the incidance angle
        self._transmission_normal = None
        self._transmission_corr = None
        self._transmission_crc = None

        if detector:
            if type(detector) in types.StringTypes:
                self.detector = detectors.detector_factory(detector)
            else:
                self.detector = detector
        else:
            self.detector = detectors.Detector()
        if splineFile:
            self.detector.splineFile = os.path.abspath(splineFile)
        elif pixel1 and pixel2:
            self.detector.pixel1 = pixel1
            self.detector.pixel2 = pixel2

    def __repr__(self):
        self.param = [self._dist, self._poni1, self._poni2,
                      self._rot1, self._rot2, self._rot3]
        lstTxt = [self.detector.__repr__()]
        if self._wavelength:
            lstTxt.append("Wavelength= %.6em" % self._wavelength)
        lstTxt.append(("SampleDetDist= %.6em\tPONI= %.6e, %.6em\trot1=%.6f"
                       "  rot2= %.6f  rot3= %.6f rad") % tuple(self.param))
        if self.detector.pixel1:
            f2d = self.getFit2D()
            lstTxt.append(("DirectBeamDist= %.3fmm\tCenter: x=%.3f, y=%.3f pix"
                           "\tTilt=%.3f deg  tiltPlanRotation= %.3f deg") %
                          (f2d["directDist"], f2d["centerX"], f2d["centerY"],
                           f2d["tilt"], f2d["tiltPlanRotation"]))
        return os.linesep.join(lstTxt)

    def _calcCartesianPositions(self, d1, d2, poni1=None, poni2=None):
        """
        Calculate the position in cartesian coordinate (centered on the PONI)
        and in meter of a couple of coordinates.
        The half pixel offset is taken into account here !!!

        @param d1: ndarray of dimention 1/2 containing the Y pixel positions
        @param d2: ndarray of dimention 1/2 containing the X pixel positions
        @param poni1: value in the Y direction of the poni coordinate (meter)
        @param poni2: value in the X direction of the poni coordinate (meter)
        @return: 2-arrays of same shape as d1 & d2 with the position in meter

        d1 and d2 must have the same shape, returned array will have
        the same shape.
        """
        if poni1 is None:
            poni1 = self.poni1
        if poni2 is None:
            poni2 = self.poni2

        p1, p2 = self.detector.calc_cartesian_positions(d1, d2)
        return p1 - poni1, p2 - poni2

    def calc_pos_zyx(self, d0=None, d1=None, d2=None, param=None):
        """
        Allows you to calculate the position of a set of points in space in the sample
        re


        @param d0: altitude on the point compared to the detector (i.e. z)
        @param d1: position on the detector along the slow dimention (i.e. y)
        @param d2: position on the detector along the fastest dimention (i.e. x)
        @return zyx array, so 3D array with dim0=along the beam,
                                            dim1=along slowest dimension
                                            dim2=along fastest dimension
                                            unless rotations are too large
        """
        if param is None:
            param = self.param
        if (d1 is None) or (d2 is None):
            raise RuntimeError("input corrdiate d1 and d2 are mandatory")
        p1, p2 = self._calcCartesianPositions(d1, d2, param[1], param[2])
        if d0 is None:
            L = param[0]
        else:
            L = param[0] + d0
        cosRot1 = cos(param[3])
        cosRot2 = cos(param[4])
        cosRot3 = cos(param[5])
        sinRot1 = sin(param[3])
        sinRot2 = sin(param[4])
        sinRot3 = sin(param[5])
        t1 = p1 * cosRot2 * cosRot3 + \
            p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - \
            L * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)
        t2 = p1 * cosRot2 * sinRot3 + \
            p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3) - \
            L * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3)
        t3 = p1 * sinRot2 - p2 * cosRot2 * sinRot1 + L * cosRot1 * cosRot2
        shape = 3, d1.shape[0], d1.shape[1]
        zyx = numpy.zeros(shape)
        zyx[0] = t3
        zyx[1] = t1
        zyx[2] = t2
        return zyx

    def tth(self, d1, d2, param=None, path="cython"):
        """
        Calculates the 2theta value for the center of a given pixel
        (or set of pixels)

        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @param path: can be "cos", "tan" or "cython"
        @return: 2theta in radians
        @rtype: floar or array of floats.
        """

        if path == "cython" and _geometry:
            if param is None:
                param = self.param

            p1, p2 = self._calcCartesianPositions(d1, d2, param[1], param[2])

            tmp = _geometry.calc_tth(L=param[0],
                                     rot1=param[3],
                                     rot2=param[4],
                                     rot3=param[5],
                                     pos1=p1,
                                     pos2=p2)
            tmp.shape = p1.shape
        else:
#             if param is None:
#                 param = self.param
#             p1, p2 = self._calcCartesianPositions(d1, d2, param[1], param[2])
#             L = param[0]
#             cosRot1 = cos(param[3])
#             cosRot2 = cos(param[4])
#             cosRot3 = cos(param[5])
#             sinRot1 = sin(param[3])
#             sinRot2 = sin(param[4])
#             sinRot3 = sin(param[5])
#             t1 = p1 * cosRot2 * cosRot3 + \
#                 p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - \
#                 L * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)
#             t2 = p1 * cosRot2 * sinRot3 + \
#                 p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3) - \
#                 L * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3)
#             t3 = p1 * sinRot2 - p2 * cosRot2 * sinRot1 + L * cosRot1 * cosRot2
            zyx = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, param=param)
            t1 = zyx[1]
            t2 = zyx[2]
            t3 = zyx[0]
            if path == "cos":
                tmp = arccos(t3 / sqrt(t1 ** 2 + t2 ** 2 + t3 ** 2))
            else:
                tmp = arctan2(sqrt(t1 ** 2 + t2 ** 2), t3)
        return tmp

    def qFunction(self, d1, d2, param=None, path="cython"):
        """
        Calculates the q value for the center of a given pixel (or set
        of pixels) in nm-1

        q = 4pi/lambda sin( 2theta / 2 )

        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return: q in in nm^(-1)
        @rtype: float or array of floats.
        """
        if not self.wavelength:
            raise RuntimeError(("Scattering vector q cannot be calculated"
                                " without knowing wavelength !!!"))

        if _geometry and path == "cython":
            p1, p2 = self._calcCartesianPositions(d1, d2,
                                                  self._poni1, self.poni2)
            out = _geometry.calc_q(L=self._dist,
                                   rot1=self._rot1,
                                   rot2=self._rot2,
                                   rot3=self._rot3,
                                   pos1=p1,
                                   pos2=p2,
                                   wavelength=self.wavelength)
            out.shape = p1.shape
        else:
            out = 4.0e-9 * numpy.pi / self.wavelength * \
                numpy.sin(self.tth(d1=d1, d2=d2, param=param) / 2.0)
        return out

    def rFunction(self, d1, d2, param=None, path="numpy"):
        """
        Calculates the radius value for the center of a given pixel
        (or set of pixels) in mm

        r = direct_distance  * tan( 2theta )

        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return: r in in mm
        @rtype: float or array of floats.
        """
        cosTilt = cos(self._rot1) * cos(self._rot2)
        directDist = self._dist / cosTilt  # in m

        if _geometry and path == "cython":
            p1, p2 = self._calcCartesianPositions(d1, d2, self._poni1, self.poni2)
            out = _geometry.calc_r(L=self._dist,
                                   rot1=self._rot1,
                                   rot2=self._rot2,
                                   rot3=self._rot3,
                                   pos1=p1,
                                   pos2=p2)
            out.shape = p1.shape
        else:
            out = directDist * numpy.tan(self.tth(d1=d1, d2=d2, param=param))
        return out

    def qArray(self, shape):
        """
        Generate an array of the given shape with q(i,j) for all
        elements.
        """
        if self._qa is None:
            with self._sem:
                if self._qa is None:
                    self._qa = numpy.fromfunction(self.qFunction, shape,
                                                  dtype=numpy.float32)
        return self._qa

    def rArray(self, shape):
        """
        Generate an array of the given shape with r(i,j) for all
        elements; r in mm.

        @param shape: expected shape
        @return: 2d array of the given shape with radius in mm from beam stop.
        """
        if self._ra is None:
            with self._sem:
                if self._ra is None:
                    self._ra = numpy.fromfunction(self.rFunction, shape,
                                                  dtype=numpy.float32)
        return self._ra

    def qCornerFunct(self, d1, d2):
        """
        Calculate the q_vector for any pixel corner (in nm^-1)
        """
        return self.qFunction(d1 - 0.5, d2 - 0.5)

    def rCornerFunct(self, d1, d2):
        """
        Calculate the radius array for any pixel corner (in mm)
        """
        return self.rFunction(d1 - 0.5, d2 - 0.5)

    def tth_corner(self, d1, d2):
        """
        Calculates the 2theta value for the corner of a given pixel
        (or set of pixels)

        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return: 2theta in radians
        @rtype: floar or array of floats.
        """
        return self.tth(d1 - 0.5, d2 - 0.5)

    def twoThetaArray(self, shape):
        """
        Generate an array of the given shape with two-theta(i,j) for
        all elements.
        """
        if self._ttha is None:
            with self._sem:
                if self._ttha is None:
                    self._ttha = numpy.fromfunction(self.tth,
                                                    shape,
                                                    dtype=numpy.float32)
        return self._ttha

    def chi(self, d1, d2, path="cython"):
        """
        Calculate the chi (azimuthal angle) for the centre of a pixel
        at coordinate d1,d2 which in the lab ref has coordinate:

        X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) -  L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))
        X2 = p1*cos(rot2)*sin(rot3) - L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +  p2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))
        X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
        hence tan(Chi) =  X2 / X1

        @param d1: pixel coordinate along the 1st dimention (C convention)
        @type d1: float or array of them
        @param d2: pixel coordinate along the 2nd dimention (C convention)
        @type d2: float or array of them
        @param path: can be "tan" (i.e via numpy) or "cython"
        @return: chi, the azimuthal angle in rad
        """
        p1, p2 = self._calcCartesianPositions(d1, d2, self._poni1, self.poni2)

        if path == "cython" and _geometry:
            tmp = _geometry.calc_chi(
                L=self._dist,
                rot1=self._rot1, rot2=self._rot2, rot3=self._rot3,
                pos1=p1, pos2=p2)
            tmp.shape = p1.shape
        else:
            cosRot1 = cos(self._rot1)
            cosRot2 = cos(self._rot2)
            cosRot3 = cos(self._rot3)
            sinRot1 = sin(self._rot1)
            sinRot2 = sin(self._rot2)
            sinRot3 = sin(self._rot3)
            L = self._dist
            num = p1 * cosRot2 * cosRot3 \
                + p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) \
                - L * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)
            den = p1 * cosRot2 * sinRot3 \
                - L * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3) \
                + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)
            tmp = numpy.arctan2(num, den)
        return tmp

    def chi_corner(self, d1, d2):
        """
        Calculate the chi (azimuthal angle) for the corner of a pixel
        at coordinate d1,d2 which in the lab ref has coordinate:

        X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) -  L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))
        X2 = p1*cos(rot2)*sin(rot3) - L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +  p2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))
        X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
        hence tan(Chi) =  X2 / X1

        @param d1: pixel coordinate along the 1st dimention (C convention)
        @type d1: float or array of them
        @param d2: pixel coordinate along the 2nd dimention (C convention)
        @type d2: float or array of them
        @return: chi, the azimuthal angle in rad
        """
        return self.chi(d1 - 0.5, d2 - 0.5)

    def chiArray(self, shape):
        """
        Generate an array of the given shape with chi(i,j) (azimuthal
        angle) for all elements.

        @param shape: the shape of the chi array
        @type shape: ndarray.shape
        @return: the chi array
        @rtype: ndarray
        """
        if self._chia is None:
            self._chia = numpy.fromfunction(self.chi, shape,
                                            dtype=numpy.float32)
            if not self.chiDiscAtPi:
                self._chia = self._chia % (2 * numpy.pi)
        return self._chia

    def cornerArray(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) (radial
        angle 2th, azimuthal angle chi ) for all elements.

        @param shape: expected shape
        @type shape: ndarray.shape
        @return: 3d array with shape=(*shape,2) the two elements are (radial angle 2th, azimuthal angle chi)
        """
        if self._corner4Da is None:
            with self._sem:
                if self._corner4Da is None:
                    chi = numpy.fromfunction(self.chi_corner,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    tth = numpy.fromfunction(self.tth_corner,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    if bilinear:
                        corners = bilinear.convert_corner_2D_to_4D(2, tth, chi)
                    else:
                        corners = numpy.zeros((shape[0], shape[1], 4, 2),
                                                  dtype=numpy.float32)
                        corners[:, :, 0, 0] = tth[:-1, :-1]
                        corners[:, :, 0, 1] = chi[:-1, :-1]
                        corners[:, :, 1, 0] = tth[1:, :-1]
                        corners[:, :, 1, 1] = chi[1:, :-1]
                        corners[:, :, 2, 0] = tth[1:, 1:]
                        corners[:, :, 2, 1] = chi[1:, 1:]
                        corners[:, :, 3, 0] = tth[:-1, 1:]
                        corners[:, :, 3, 1] = chi[:-1, 1:]
                    self._corner4Da = corners
        return self._corner4Da

    def cornerQArray(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) (azimuthal
        angle) for all elements.
        """
        if self._corner4Dqa is None:
            with self._sem:
                if self._corner4Dqa is None:
                    self._corner4Dqa = numpy.zeros((shape[0], shape[1], 4, 2),
                                                   dtype=numpy.float32)
                    qar = numpy.fromfunction(self.qCornerFunct,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    chi = numpy.fromfunction(self.chi_corner,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    if bilinear:
                        corners = bilinear.convert_corner_2D_to_4D(2, qar, chi)
                    else:
                        corners = numpy.zeros((shape[0], shape[1], 4, 2),
                                                  dtype=numpy.float32)
                        corners[:, :, 0, 0] = qar[:-1, :-1]
                        corners[:, :, 0, 1] = chi[:-1, :-1]
                        corners[:, :, 1, 0] = qar[1:, :-1]
                        corners[:, :, 1, 1] = chi[1:, :-1]
                        corners[:, :, 2, 0] = qar[1:, 1:]
                        corners[:, :, 2, 1] = chi[1:, 1:]
                        corners[:, :, 3, 0] = qar[:-1, 1:]
                        corners[:, :, 3, 1] = chi[:-1, 1:]
                    self._corner4Dqa = corners
        return self._corner4Dqa

    def cornerRArray(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) (azimuthal
        angle) for all elements.
        """
        if self._corner4Dra is None:
            with self._sem:
                if self._corner4Dra is None:
                    self._corner4Dra = numpy.zeros((shape[0], shape[1], 4, 2),
                                                   dtype=numpy.float32)
                    rar = numpy.fromfunction(self.rCornerFunct,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    chi = numpy.fromfunction(self.chi_corner,
                                             (shape[0] + 1, shape[1] + 1),
                                             dtype=numpy.float32)
                    if bilinear:
                        corners = bilinear.convert_corner_2D_to_4D(2, rar, chi)
                    else:
                        corners = numpy.zeros((shape[0], shape[1], 4, 2),
                                                  dtype=numpy.float32)
                        corners[:, :, 0, 0] = rar[:-1, :-1]
                        corners[:, :, 0, 1] = chi[:-1, :-1]
                        corners[:, :, 1, 0] = rar[1:, :-1]
                        corners[:, :, 1, 1] = chi[1:, :-1]
                        corners[:, :, 2, 0] = rar[1:, 1:]
                        corners[:, :, 2, 1] = chi[1:, 1:]
                        corners[:, :, 3, 0] = rar[:-1, 1:]
                        corners[:, :, 3, 1] = chi[:-1, 1:]
                    self._corner4Dra = corners
        return self._corner4Dra

    def delta2Theta(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) with the max
        distance between the center and any corner in 2 theta

        @param shape: The shape of the detector array: 2-tuple of integer
        @return: 2D-array containing the max delta angle between a pixel center and any corner in 2theta-angle (rad)
        """
        tth_center = self.twoThetaArray(shape)
        if self._dttha is None:
            with self._sem:
                if self._dttha is None:
                    delta = numpy.zeros([shape[0], shape[1], 4],
                                        dtype=numpy.float32)
                    if self._corner4Da is not None\
                            and self._corner4Da.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                abs(self._corner4Da[:, :, i, 0] - tth_center)
                    else:
                        tth_corner = numpy.fromfunction(
                            self.tth_corner,
                            (shape[0] + 1, shape[1] + 1), dtype=numpy.float32)
                        delta[:, :, 0] = abs(tth_corner[:-1, :-1] - tth_center)
                        delta[:, :, 1] = abs(tth_corner[1:, :-1] - tth_center)
                        delta[:, :, 2] = abs(tth_corner[1:, 1:] - tth_center)
                        delta[:, :, 3] = abs(tth_corner[:-1, 1:] - tth_center)
                    self._dttha = delta.max(axis=2)
        return self._dttha

    def deltaChi(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) with the max
        distance between the center and any corner in chi-angle (rad)

        @param shape: The shape of the detector array: 2-tuple of integer
        @return: 2D-array  containing the max delta angle between a pixel center and any corner in chi-angle (rad)
        """
        chi_center = self.chiArray(shape)
        if self._dchia is None:
            with self._sem:
                if self._dchia is None:
                    twoPi = 2 * numpy.pi
                    delta = numpy.zeros([shape[0], shape[1], 4],
                                        dtype=numpy.float32)
                    if self._corner4Da is not None\
                            and self._corner4Da.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                numpy.minimum(((self._corner4Da[:, :, i, 1] - chi_center) % twoPi),
                                              ((chi_center - self._corner4Da[:, :, i, 1]) % twoPi))
                    if self._corner4Dqa is not None\
                            and self._corner4Dqa.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                numpy.minimum(((self._corner4Dqa[:, :, i, 1] - chi_center) % twoPi),
                                              ((chi_center - self._corner4Dqa[:, :, i, 1]) % twoPi))
                    if self._corner4Dra is not None\
                            and self._corner4Dra.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                numpy.minimum(((self._corner4Dra[:, :, i, 1] - chi_center) % twoPi),
                                              ((chi_center - self._corner4Dra[:, :, i, 1]) % twoPi))
                    else:
                        chi_corner = \
                            numpy.fromfunction(self.chi_corner,
                                               (shape[0] + 1, shape[1] + 1),
                                               dtype=numpy.float32)
                        delta[:, :, 0] = \
                            numpy.minimum(((chi_corner[:-1, :-1] - chi_center) % twoPi),
                                          ((chi_center - chi_corner[:-1, :-1]) % twoPi))
                        delta[:, :, 1] = \
                            numpy.minimum(((chi_corner[1: , :-1] - chi_center) % twoPi),
                                          ((chi_center - chi_corner[1: , :-1]) % twoPi))
                        delta[:, :, 2] = \
                            numpy.minimum(((chi_corner[1: , 1: ] - chi_center) % twoPi),
                                          ((chi_center - chi_corner[1: , 1: ]) % twoPi))
                        delta[:, :, 3] = \
                            numpy.minimum(((chi_corner[:-1, 1: ] - chi_center) % twoPi),
                                          ((chi_center - chi_corner[:-1, 1: ]) % twoPi))
                    self._dchia = delta.max(axis=-1)
        return self._dchia

    def deltaQ(self, shape):
        """
        Generate a 2D array of the given shape with (i,j) with the max
        distance between the center and any corner in q_vector unit
        (nm^-1)

        @param shape: The shape of the detector array: 2-tuple of integer
        @return: array 2D containing the max delta Q between a pixel center and any corner in q_vector unit (nm^-1)
        """
        q_center = self.qArray(shape)
        if self._dqa is None:
            with self._sem:
                if self._dqa is None:
                    delta = numpy.zeros([shape[0], shape[1], 4],
                                        dtype=numpy.float32)
                    if self._corner4Dqa is not None\
                            and self._corner4Dqa.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                abs(self._corner4Dqa[:, :, i, 0] - q_center)
                    else:
                        q_corner = \
                            numpy.fromfunction(self.qCornerFunct,
                                               (shape[0] + 1, shape[1] + 1),
                                               dtype=numpy.float32)
                        delta[:, :, 0] = abs(q_corner[:-1, :-1] - q_center)
                        delta[:, :, 1] = abs(q_corner[1:, :-1] - q_center)
                        delta[:, :, 2] = abs(q_corner[1:, 1:] - q_center)
                        delta[:, :, 3] = abs(q_corner[:-1, 1:] - q_center)
                    self._dqa = delta.max(axis=-1)
        return self._dqa

    def deltaR(self, shape):
        """
        Generate a 2D array of the given shape with (i,j) with the max
        distance between the center and any corner in radius unit (mm)

        @param shape: The shape of the detector array: 2-tuple of integer
        @return: array 2D containing the max delta Q between a pixel center and any corner in q_vector unit (nm^-1)
        """
        q_center = self.rArray(shape)
        if self._dra is None:
            with self._sem:
                if self._dra is None:
                    delta = numpy.zeros([shape[0], shape[1], 4],
                                        dtype=numpy.float32)
                    if self._corner4Dra is not None\
                            and self._corner4Dra.shape[:2] == tuple(shape):
                        for i in range(4):
                            delta[:, :, i] = \
                                abs(self._corner4Dra[:, :, i, 0] - q_center)
                    else:
                        q_corner = \
                            numpy.fromfunction(self.rCornerFunct,
                                               (shape[0] + 1, shape[1] + 1),
                                               dtype=numpy.float32)
                        delta[:, :, 0] = abs(q_corner[:-1, :-1] - q_center)
                        delta[:, :, 1] = abs(q_corner[1:, :-1] - q_center)
                        delta[:, :, 2] = abs(q_corner[1:, 1:] - q_center)
                        delta[:, :, 3] = abs(q_corner[:-1, 1:] - q_center)
                    self._dra = delta.max(axis=-1)
        return self._dra

    def cosIncidance(self, d1, d2):
        """
        Calculate the incidence angle (alpha) for current pixels (P).
        The poni is at incidence angle=1 so cos(alpha) = 1

        """
        p1, p2 = self._calcCartesianPositions(d1, d2)
        cosa = self._dist / numpy.sqrt(self._dist * self._dist + p1 * p1 + p2 * p2)
        return cosa

    def diffSolidAngle(self, d1, d2):
        """
        Calculate the solid angle of the current pixels (P) versus the PONI (C)

                  Omega(P)    A cos(a)     SC^2         3       SC^3
        dOmega = --------- = --------- x --------- = cos (a) = ------
                  Omega(C)    SP^2        A cos(0)              SP^3

        cos(a) = SC/SP

        @param d1: 1d or 2d set of points
        @param d2: 1d or 2d set of points (same size&shape as d1)
        @return: solid angle correction array
        """
        ds = 1.0

        # #######################################################
        # Nota: the solid angle correction should be done in flat
        # field correction Here is dual-correction
        # #######################################################

        if self.spline and self._correct_solid_angle_for_spline:
            max1 = d1.max() + 1
            max2 = d2.max() + 1
            sX = self.spline.splineFuncX(numpy.arange(max2 + 1),
                                         numpy.arange(max1) + 0.5)
            sY = self.spline.splineFuncY(numpy.arange(max2) + 0.5,
                                         numpy.arange(max1 + 1))
            dX = sX[:, 1:] - sX[:, :-1]
            dY = sY[1:, : ] - sY[:-1, :]
            ds = (dX + 1.0) * (dY + 1.0)

        if self._cosa is None:
            self._cosa = self.cosIncidance(d1, d2)
        dsa = ds * self._cosa ** self._dssa_order

        return dsa

    def solidAngleArray(self, shape, order=3):
        """
        Generate an array of the given shape with the solid angle of
        the current element two-theta(i,j) for all elements.



        @param shape: shape of the array expected
        @param order:
        """
        if self._dssa is None:
            if order is True:
                self._dssa_order = 3.0
            else:
                self._dssa_order = float(order)
            self._dssa = numpy.fromfunction(self.diffSolidAngle,
                                            shape, dtype=numpy.float32)
            self._dssa_crc = crc32(self._dssa)
        return self._dssa

    def save(self, filename):
        """
        Save the refined parameters.

        @param filename: name of the file where to save the parameters
        @type filename: string
        """
        try:
            with open(filename, "a") as f:
                f.write(("# Nota: C-Order, 1 refers to the Y axis,"
                         " 2 to the X axis \n"))
                f.write("# Calibration done at %s\n" % time.ctime())
                if self.detector.name != "Detector":
                    f.write("Detector: %s\n" % self.detector.__class__.__name__)
                f.write("PixelSize1: %s\n" % self.pixel1)
                f.write("PixelSize2: %s\n" % self.pixel2)
                f.write("Distance: %s\n" % self._dist)
                f.write("Poni1: %s\n" % self._poni1)
                f.write("Poni2: %s\n" % self._poni2)
                f.write("Rot1: %s\n" % self._rot1)
                f.write("Rot2: %s\n" % self._rot2)
                f.write("Rot3: %s\n" % self._rot3)
                f.write("SplineFile: %s\n" % self.splineFile)
                if self._wavelength is not None:
                    f.write("Wavelength: %s\n" % self._wavelength)
        except IOError:
            logger.error("IOError while writing to file %s" % filename)
    write = save

    @classmethod
    def sload(cls, filename):
        """
        A static method combining the constructor and the loader from
        a file

        @param filename: name of the file to load
        @type filename: string
        @return: instance of Gerometry of AzimuthalIntegrator set-up with the parameter from the file.
        """
        inst = cls()
        inst.load(filename)
        return inst

    def load(self, filename):
        """
        Load the refined parameters from a file.

        @param filename: name of the file to load
        @type filename: string
        """
        data = {}
        for line in open(filename):
            if line.startswith("#") or (":" not in line):
                continue
            words = line.split(":", 1)

            key = words[0].strip().lower()
            try:
                value = words[1].strip()
            except Exception as error:  # IGNORE:W0703:
                logger.error("Error %s with line: %s" % (error, line))
            data[key] = value
        if "detector" in data:
            self.detector = detectors.detector_factory(data["detector"])
        if "pixelsize1" in data:
            self.detector.pixel1 = float(data["pixelsize1"])
        if "pixelsize2" in data:
            self.detector.pixel2 = float(data["pixelsize2"])
        if "distance" in data:
            self._dist = float(data["distance"])
        if "poni1" in data:
            self._poni1 = float(data["poni1"])
        if "poni2" in data:
            self._poni2 = float(data["poni2"])
        if "rot1" in data:
            self._rot1 = float(data["rot1"])
        if "rot2" in data:
            self._rot2 = float(data["rot2"])
        if "rot3" in data:
            self._rot3 = float(data["rot3"])
        if "wavelength" in data:
            self._wavelength = float(data["wavelength"])
        if "splinefile" in data:
            if data["splinefile"].lower() != "none":
                self.detector.set_splineFile(data["splinefile"])
        self.reset()
    read = load

    def getPyFAI(self):
        """
        Export geometry setup with the geometry of PyFAI

        @return: dict with the parameter-set of the PyFAI geometry
        """
        with self._sem:
            out = self.detector.getPyFAI()
            out["dist"] = self._dist
            out["poni1"] = self._poni1
            out["poni2"] = self._poni2
            out["rot1"] = self._rot1
            out["rot2"] = self._rot2
            out["rot3"] = self._rot3
            if self._wavelength:
                out["wavelength"] = self._wavelength
        return out

    def setPyFAI(self, **kwargs):
        """
        set the geometry from a pyFAI-like dict
        """
        with self._sem:
            if "detector" in kwargs:
                self.detector = detectors.detector_factory(kwargs["detector"])
            else:
                self.detector = detectors.Detector()
            for key in ["dist", "poni1", "poni2",
                        "rot1", "rot2", "rot3",
                        "pixel1", "pixel2", "splineFile", "wavelength"]:
                if key in kwargs:
                    setattr(self, key, kwargs[key])
            self.param = [self._dist, self._poni1, self._poni2,
                          self._rot1, self._rot2, self._rot3]
            self.chiDiscAtPi = True  # position of the discontinuity of chi in radians, pi by default
            self.reset()
#            self._wavelength = None
            self._oversampling = None
            if self.splineFile:
                self.detector.set_splineFile(self.splineFile)

    def getFit2D(self):
        """
        Export geometry setup with the geometry of Fit2D

        @return: dict with parameters compatible with fit2D geometry
        """
        with self._sem:
            cosTilt = cos(self._rot1) * cos(self._rot2)
            sinTilt = sqrt(1 - cosTilt * cosTilt)
            # This is tilt plane rotation
            if sinTilt != 0:
                cosTpr = max(-1, min(1, -cos(self._rot2) * sin(self._rot1) / sinTilt))
                sinTpr = sin(self._rot2) / sinTilt
            else:  # undefined, does not seem to matter as not tilted
                cosTpr = 1.0
                sinTpr = 0.0
            directDist = 1.0e3 * self._dist / cosTilt
            tilt = degrees(arccos(cosTilt))
            if sinTpr < 0:
                tpr = -degrees(arccos(cosTpr))
            else:
                tpr = degrees(arccos(cosTpr))

            centerX = (self._poni2 + self._dist * sinTilt / cosTilt * cosTpr)\
                / self.pixel2
            if abs(tilt) < 1e-5:
                centerY = (self._poni1) / self.pixel1
            else:
                centerY = (self._poni1 + self._dist * sinTilt / cosTilt * sinTpr) / self.pixel1
            out = self.detector.getFit2D()
            out["directDist"] = directDist
            out["centerX"] = centerX
            out["centerY"] = centerY
            out["tilt"] = tilt
            out["tiltPlanRotation"] = tpr
        return out

    def setFit2D(self, directDist, centerX, centerY,
                 tilt=0., tiltPlanRotation=0.,
                 pixelX=None, pixelY=None, splineFile=None):
        """
        Set the Fit2D-like parameter set: For geometry description see
        HPR 1996 (14) pp-240

        Warning: Fit2D flips automatically images depending on their file-format.
        By reverse engineering we noticed this behavour for Tiff and Mar345 images (at least).
        To obtaine correct result you will have to flip images using numpy.flipud.

        @param direct: direct distance from sample to detector along the incident beam (in millimeter as in fit2d)
        @param tilt: tilt in degrees
        @param tiltPlanRotation: Rotation (in degrees) of the tilt plan arround the Z-detector axis
                * 0deg -> Y does not move, +X goes to Z<0
                * 90deg -> X does not move, +Y goes to Z<0
                * 180deg -> Y does not move, +X goes to Z>0
                * 270deg -> X does not move, +Y goes to Z>0

        @param pixelX,pixelY: as in fit2d they ar given in micron, not in meter
        @param centerX, centerY: pixel position of the beam center
        @param splineFile: name of the file containing the spline
        """
        with self._sem:
            try:
                cosTilt = cos(radians(tilt))
                sinTilt = sin(radians(tilt))
                cosTpr = cos(radians(tiltPlanRotation))
                sinTpr = sin(radians(tiltPlanRotation))
            except AttributeError as error:
                logger.error(("Got strange results with tilt=%s"
                              " and tiltPlanRotation=%s: %s") %
                             (tilt, tiltPlanRotation, error))
            if splineFile is None:
                if pixelX is not None:
                    self.detector.pixel1 = pixelY * 1.0e-6
                if pixelY is not None:
                    self.detector.pixel2 = pixelX * 1.0e-6
            else:
                self.detector.set_splineFile(splineFile)
            self._dist = directDist * cosTilt * 1.0e-3
            self._poni1 = centerY * self.pixel1\
                - directDist * sinTilt * sinTpr * 1.0e-3
            self._poni2 = centerX * self.pixel2\
                - directDist * sinTilt * cosTpr * 1.0e-3
            rot2 = numpy.arcsin(sinTilt * sinTpr)  # or pi-
            rot1 = numpy.arccos(min(1.0, max(-1.0, (cosTilt / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt)))))  # + or -
            if cosTpr * sinTilt > 0:
                rot1 = -rot1
            assert abs(cosTilt - cos(rot1) * cos(rot2)) < 1e-6
            if tilt == 0:
                rot3 = 0
            else:
                rot3 = numpy.arccos(min(1.0, max(-1.0, (cosTilt * cosTpr * sinTpr - cosTpr * sinTpr) / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt))))  # + or -
                rot3 = numpy.pi / 2 - rot3
            self._rot1 = rot1
            self._rot2 = rot2
            self._rot3 = rot3
            self.reset()

    def setSPD(self, SampleDistance, Center_1, Center_2, Rot_1=0, Rot_2=0, Rot_3=0,
               PSize_1=None, PSize_2=None, splineFile=None, BSize_1=1, BSize_2=1,
               WaveLength=None):
        """
        Set the SPD like parameter set: For geometry description see
        Peter Boesecke J.Appl.Cryst.(2007).40, s423–s427

        Basically the main difference with pyFAI is the order of the axis which are flipped

        @param SampleDistance: distance from sample to detector at the PONI (orthogonal projection)
        @param Center_1, pixel position of the PONI along fastest axis
        @param Center_2: pixel position of the PONI along slowest axis
        @param Rot_1: rotation around the fastest axis (x)
        @param Rot_2: rotation around the slowest axis (y)
        @param Rot_3: rotation around the axis ORTHOGONAL to the detector plan
        @param PSize_1: pixel size in meter along the fastest dimention
        @param PSize_2: pixel size in meter along the slowst dimention
        @param splineFile: name of the file containing the spline
        @param BSize_1: pixel binning factor along the fastest dimention
        @param BSize_2: pixel binning factor along the slowst dimention
        @param WaveLength: wavelength used
        """
        #first define the detector
        if splineFile:
            #let's assume the spline file is for unbinned detectors ...
            self.detector = detectors.FReLoN(splineFile)
            self.detector.binning = (int(BSize_2), int(BSize_1))
        elif PSize_1 and PSize_2:
            self.detector = detectors.Detector(PSize_2, PSize_1)
            if BSize_2 > 1 or BSize_1 > 1:
                #set binning factor without changing pixel size
                self.detector._binning = (int(BSize_2), int(BSize_1))

        #then the geometry
        self._dist = float(SampleDistance)
        self._poni1 = float(Center_2) * self.detector.pixel1
        self._poni2 = float(Center_1) * self.detector.pixel2
        #This is WRONG ... correct it
        self._rot1 = Rot_2 or 0
        self._rot2 = Rot_1 or 0
        self._rot3 = -(Rot_3 or 0)
        if Rot_1  or Rot_2  or Rot_3 :
            raise NotImplementedError("rotation axis not yet implemented for SPD")
        #and finally the wavelength
        if WaveLength:
            self.wavelength = float(WaveLength)
        self.reset()

    def getSPD(self):
        """
        get the SPD like parameter set: For geometry description see
        Peter Boesecke J.Appl.Cryst.(2007).40, s423–s427

        Basically the main difference with pyFAI is the order of the axis which are flipped

        @return: dictionnary with those parameters:
            SampleDistance: distance from sample to detector at the PONI (orthogonal projection)
            Center_1, pixel position of the PONI along fastest axis
            Center_2: pixel position of the PONI along slowest axis
            Rot_1: rotation around the fastest axis (x)
            Rot_2: rotation around the slowest axis (y)
            Rot_3: rotation around the axis ORTHOGONAL to the detector plan
            PSize_1: pixel size in meter along the fastest dimention
            PSize_2: pixel size in meter along the slowst dimention
            splineFile: name of the file containing the spline
            BSize_1: pixel binning factor along the fastest dimention
            BSize_2: pixel binning factor along the slowst dimention
            WaveLength: wavelength used in meter
        """
        res = {"PSize_1": self.detector.pixel2,
               "PSize_2": self.detector.pixel1,
               "BSize_1":self.detector.binning[1],
               "BSize_2":self.detector.binning[0],
               "splineFile":self.detector.splineFile,
               "Rot_3": None,
               "Rot_2": None,
               "Rot_1":None,
               "Center_2" : self._poni1 / self.detector.pixel1,
               "Center_1" : self._poni2 / self.detector.pixel2,
               "SampleDistance": self.dist
               }
        if self._wavelength:
            res["WaveLength"] = self._wavelength
        if abs(self.rot1) > 1e-6 or abs(self.rot2) > 1e-6 or abs(self.rot3) > 1e-6:
            logger.warning("Rotation conversion from pyFAI to SPD is not yet implemented")
        return res

    def setChiDiscAtZero(self):
        """
        Set the position of the discontinuity of the chi axis between
        0 and 2pi.  By default it is between pi and -pi
        """
        self.chiDiscAtPi = False
        self._chia = None
        self._corner4Da = None
        self._corner4Dqa = None
        self._corner4Dra = None

    def setChiDiscAtPi(self):
        """
        Set the position of the discontinuity of the chi axis between
        -pi and +pi.  This is the default behavour
        """
        self.chiDiscAtPi = True
        self._chia = None
        self._corner4Da = None
        self._corner4Dqa = None
        self._corner4Dra = None

    def setOversampling(self, iOversampling):
        """
        set the oversampling factor
        """
        if self._oversampling is None:
            lastOversampling = 1.0
        else:
            lastOversampling = float(self._oversampling)

        self._oversampling = iOversampling
        self._ttha = None
        self._dssa = None
        self._chia = None
        self._qa = None
        self.pixel1 /= self._oversampling / lastOversampling
        self.pixel2 /= self._oversampling / lastOversampling

    def oversampleArray(self, myarray):
        origShape = myarray.shape
        origType = myarray.dtype
        new = numpy.zeros((origShape[0] * self._oversampling,
                           origShape[1] * self._oversampling)).astype(origType)
        for i in range(self._oversampling):
            for j in range(self._oversampling):
                new[i::self._oversampling, j::self._oversampling] = myarray
        return new

    def polarization(self, shape=None, factor=None, axis_offset=0):
        """
        Calculate the polarization correction accoding to the
        polarization factor:

        * If the polarization factor is None, the correction is not applied (returns 1)
        * If the polarization factor is 0 (circular polarization), the correction correspond to (1+(cos2θ)^2)/2
        * If the polarization factor is 1 (linear horizontal polarization), there is no correction in the vertical plane  and a node at 2th=90, chi=0
        * If the polarization factor is -1 (linear vertical polarization), there is no correction in the horizontal plane and a node at 2th=90, chi=90
        * If the polarization is elliptical, the polarization factor varies between -1 and +1.

        The axis_offset parameter allows correction for the misalignement of the polarization plane (or ellipse main axis) and the the detector's X axis.

        @param factor: (Ih-Iv)/(Ih+Iv): varies between 0 (no polarization) and 1 (where division by 0 could occure at 2th=90, chi=0)
        @param axis_offset: Angle between the polarization main axis and detector X direction (in radians !!!)
        @return: 2D array with polarization correction array (intensity/polarisation)

        """
        if shape is None:
            for i in ["_ttha", "_dttha", "_dssa", "_chia", "_dchia", "_qa", "_dqa", "_ra", "_dra"]:
                ary = self.__getattribute__(i)
                if ary is not None:
                    shape = ary.shape
                    break
        if shape is None:
            raise RuntimeError(("You should provide a shape if the"
                                " geometry is not yet initiallized"))


        if factor is None:
            return numpy.ones(shape, dtype=numpy.float32)
        else:
            factor = float(factor)

        if self._polarization is not None:
            with self._sem:
                if (factor == self._polarization_factor) \
                    and (shape == self._polarization.shape)\
                    and (axis_offset == self._polarization_axis_offset):
                    return self._polarization

        tth = self.twoThetaArray(shape)
        chi = self.chiArray(shape) + axis_offset
        with self._sem:
                cos2_tth = numpy.cos(tth) ** 2
                self._polarization = ((1 + cos2_tth - factor * numpy.cos(2 * chi) * (1 - cos2_tth)) / 2.0)  # .astype(numpy.float32)
                self._polarization_factor = factor
                self._polarization_axis_offset = axis_offset
                self._polarization_crc = crc32(self._polarization)
                return self._polarization

    def calc_transmission(self, t0, shape=None):
        """
        Defines the absorption correction for a phosphor screen or a scintillator
        from t0, the normal transmission of the screen.

        Icor = Iobs(1-t0)/(1-exp(ln(t0)/cos(incidence)))
                 1-exp(ln(t0)/cos(incidence)
        let t = -----------------------------
                          1 - t0
        See reference on:
        J. Appl. Cryst. (2002). 35, 356–359 G. Wu et al.  CCD phosphor

        @param t0: value of the normal transmission (from 0 to 1)
        @param shape: shape of the array
        @return: actual
        """
        if t0 < 0 or t0 > 1:
            logger.error("Impossible value for normal transmission: %s" % t0)
            return

        with self._sem:
            if (t0 == self._transmission_normal) \
                and (shape is None \
                     or (shape == self._transmission_corr.shape)):
                return self._transmission_corr

        if self._cosa is None:
            if shape is None:
                for i in ["_ttha", "_dttha", "_dssa", "_chia", "_dchia", "_qa", "_dqa", "_ra", "_dra"]:
                    ary = self.__getattribute__(i)
                    if ary is not None:
                        shape = ary.shape
                        break
            if shape is None:
                raise RuntimeError(("You should provide a shape if the"
                                    " geometry is not yet initiallized"))

        with self._sem:
            self._transmission_normal = t0
            if self._cosa is None:
                self._cosa = numpy.fromfunction(self.cosIncidance, shape, dtype=numpy.float32)
            self._transmission_corr = (1.0 - numpy.exp(numpy.log(t0) / self._cosa)) / (1 - t0)
            self._transmission_crc = crc32(self._transmission_corr)
        return self._transmission_corr

    def reset(self):
        """
        reset most arrays that are cached: used when a parameter
        changes.
        """
        self.param = [self._dist, self._poni1, self._poni2,
                      self._rot1, self._rot2, self._rot3]
        self._ttha = None
        self._dttha = None
        self._dssa = None
        self._chia = None
        self._dchia = None
        self._qa = None
        self._dqa = None
        self._ra = None
        self._dra = None
        self._corner4Da = None
        self._corner4Dqa = None
        self._corner4Dra = None
        self._polarization = None
        self._polarization_factor = None
        self._transmission_normal = None
        self._transmission_corr = None
        self._transmission_crc = None
        self._cosa = None


    def calcfrom1d(self, tth, I, shape=None, mask=None,
                   dim1_unit=units.TTH, correctSolidAngle=True):
        """
        Computes a 2D image from a 1D integrated profile

        @param tth: 1D array with 2theta in degrees
        @param I: scattering intensity
        @return: 2D image reconstructed

        """
        dim1_unit = units.to_unit(dim1_unit)
        tth = tth.copy() / dim1_unit.scale

        if shape is None:
            shape = self.detector.max_shape
        try:
            ttha = self.__getattribute__(dim1_unit.center)(shape)
        except:
            raise RuntimeError("in pyFAI.Geometry.calcfrom1d: " + \
                               str(dim1_unit) + " not (yet?) Implemented")
        calcimage = numpy.interp(ttha.ravel(), tth, I)
        calcimage.shape = shape
        if correctSolidAngle:
            calcimage *= self.solidAngleArray(shape)
        if mask is not None:
            assert mask.shape == tuple(shape)
            calcimage[numpy.where(mask)] = 0
        return calcimage

# ############################################
# Accessors and public properties of the class
# ############################################

    def set_dist(self, value):
        if isinstance(value, float):
            self._dist = value
        else:
            self._dist = float(value)
        self.reset()

    def get_dist(self):
        return self._dist

    dist = property(get_dist, set_dist)

    def set_poni1(self, value):
        if isinstance(value, float):
            self._poni1 = value
        elif isinstance(value, (tuple, list)):
            self._poni1 = float(value[0])
        else:
            self._poni1 = float(value)
        self.reset()

    def get_poni1(self):
        return self._poni1

    poni1 = property(get_poni1, set_poni1)

    def set_poni2(self, value):
        if isinstance(value, float):
            self._poni2 = value
        elif isinstance(value, (tuple, list)):
            self._poni2 = float(value[0])
        else:
            self._poni2 = float(value)
        self.reset()

    def get_poni2(self):
        return self._poni2

    poni2 = property(get_poni2, set_poni2)

    def set_rot1(self, value):
        if isinstance(value, float):
            self._rot1 = value
        elif isinstance(value, (tuple, list)):
            self._rot1 = float(value[0])
        else:
            self._rot1 = float(value)
        self.reset()

    def get_rot1(self):
        return self._rot1

    rot1 = property(get_rot1, set_rot1)

    def set_rot2(self, value):
        if isinstance(value, float):
            self._rot2 = value
        elif isinstance(value, (tuple, list)):
            self._rot2 = float(value[0])
        else:
            self._rot2 = float(value)
        self.reset()

    def get_rot2(self):
        return self._rot2

    rot2 = property(get_rot2, set_rot2)

    def set_rot3(self, value):
        if isinstance(value, float):
            self._rot3 = value
        elif isinstance(value, (tuple, list)):
            self._rot3 = float(value[0])
        else:
            self._rot3 = float(value)
        self.reset()

    def get_rot3(self):
        return self._rot3

    rot3 = property(get_rot3, set_rot3)

    def set_wavelength(self, value):
        if isinstance(value, float):
            self._wavelength = value
        elif isinstance(value, (tuple, list)):
            self._wavelength = float(value[0])
        else:
            self._wavelength = float(value)
        self._qa = None
        self._dqa = None
        self._corner4Dqa = None

    def get_wavelength(self):
        if self._wavelength is None:
            raise RuntimeWarning("Using wavelength without having defined"
                                 " it previously ... excepted to fail !")
        return self._wavelength

    wavelength = property(get_wavelength, set_wavelength)

    def get_ttha(self):
        return self._ttha

    def set_ttha(self, _):
        logger.error("You are not allowed to modify 2theta array")

    def del_ttha(self):
        self._ttha = None

    ttha = property(get_ttha, set_ttha, del_ttha, "2theta array in cache")

    def get_chia(self):
        return self._chia

    def set_chia(self, _):
        logger.error("You are not allowed to modify chi array")

    def del_chia(self):
        self._chia = None

    chia = property(get_chia, set_chia, del_chia, "chi array in cache")

    def get_dssa(self):
        return self._dssa

    def set_dssa(self, _):
        logger.error("You are not allowed to modify solid angle array")

    def del_dssa(self):
        self._dssa = None

    dssa = property(get_dssa, set_dssa, del_dssa, "solid angle array in cache")

    def get_qa(self):
        return self._qa

    def set_qa(self, _):
        logger.error("You are not allowed to modify Q array")

    def del_qa(self):
        self._qa = None

    qa = property(get_qa, set_qa, del_qa, "Q array in cache")

    def get_pixel1(self):
        return self.detector.pixel1

    def set_pixel1(self, pixel1):
        self.detector.pixel1 = pixel1

    pixel1 = property(get_pixel1, set_pixel1)

    def get_pixel2(self):
        return self.detector.pixel2

    def set_pixel2(self, pixel2):
        self.detector.pixel2 = pixel2

    pixel2 = property(get_pixel2, set_pixel2)

    def get_splineFile(self):
        return self.detector.splineFile

    def set_splineFile(self, splineFile):
        self.detector.splineFile = splineFile

    splineFile = property(get_splineFile, set_splineFile)

    def get_spline(self):
        return self.detector.spline

    def set_spline(self, spline):
        self.detector.spline = spline

    spline = property(get_spline, set_spline)

    def get_correct_solid_angle_for_spline(self):
        return self._correct_solid_angle_for_spline

    def set_correct_solid_angle_for_spline(self, value):
        v = bool(value)
        with self._sem:
            if v != self._correct_solid_angle_for_spline:
                self._dssa = None
                self._correct_solid_angle_for_spline = v

    correct_SA_spline = property(get_correct_solid_angle_for_spline,
                                 set_correct_solid_angle_for_spline)