This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/FastXRFLinearFit.py is in pymca 4.7.4+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#/*##########################################################################
# Copyright (C) 2013-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This file is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__license__ = "LGPL"
import os
import numpy
from PyMca.linalg import lstsq
from PyMca import ClassMcaTheory
from PyMca import Gefit
from PyMca import ConcentrationsTool
from PyMca import SpecfitFuns
from PyMca import ConfigDict
import time

DEBUG = 0

class FastXRFLinearFit(object):
    def __init__(self, mcafit=None):
        self._config = None
        if mcafit is None:
            self._mcaTheory = ClassMcaTheory.McaTheory()
        else:
            self._mcaTheory = mcafit

    def setFitConfiguration(self, configuration):
        self._mcaTheory.setConfiguration(configuration)

    def setFitConfigurationFile(self, ffile):
        if not os.path.exists(ffile):
            raise IOError("File <%s> does not exists" % ffile)
        configuration = ConfigDict.ConfigDict()
        configuration.read(ffile)
        self.setFitConfiguration(configuration)

    def fitMultipleSpectra(self, x=None, y=None, xmin=None, xmax=None,
                           configuration=None, concentrations=False,
                           ysum=None, weight=None):
        if y is None:
            raise RuntimeError("y keyword argument is mandatory!")

        #if concentrations:
        #    txt = "Fast concentration calculation not implemented yet"
        #    raise NotImplemented(txt)

        if DEBUG:
            t0 = time.time()
        if configuration is not None:
            self._mcaTheory.setConfiguration(configuration)

        # read the current configuration
        config = self._mcaTheory.getConfiguration()

        # background
        if config['fit']['stripflag']:
            if config['fit']['stripalgorithm'] == 1:
                if DEBUG:
                    print("SNIP")
            else:
                raise RuntimeError("Please use the faster SNIP background")

        toReconfigure = False
        if weight is None:
            # dictated by the file
            weight = config['fit']['fitweight']
            if weight:
                # individual pixel weights (slow)
                weightPolicy = 2
            else:
                # No weight
                weightPolicy = 0
        elif weight == 1:
            # use average weight from the sum spectrum
            weightPolicy = 1
            if not config['fit']['fitweight']:
                 config['fit']['fitweight'] = 1
                 toReconfigure = True               
        elif weight == 2:
           # individual pixel weights (slow)
            weightPolicy = 2
            if not config['fit']['fitweight']:
                 config['fit']['fitweight'] = 1
                 toReconfigure = True
            weight = 1
        else:
            # No weight
            weightPolicy = 0
            if config['fit']['fitweight']:
                 config['fit']['fitweight'] = 0
                 toReconfigure = True
            weight = 0

        if not config['fit']['linearfitflag']:
            #make sure we force a linear fit
            config['fit']['linearfitflag'] = 1
            toReconfigure = True

        if toReconfigure: 
            # we must configure again the fit
            self._mcaTheory.setConfiguration(config)

        if hasattr(y, "info") and hasattr(y, "data"):
            data = y.data
            mcaIndex = y.info.get("McaIndex", -1)
        else:
            data = y
            mcaIndex = -1

        if len(data.shape) != 3:
            txt = "For the time being only three dimensional arrays supported"
            raise IndexError(txt)
        elif mcaIndex not in [-1, 2]:
            txt = "For the time being only mca arrays supported"
            raise IndexError(txt)
        else:
            # if the cumulated spectrum is present it should be better
            nRows = data.shape[0]
            nColumns = data.shape[1]
            nPixels =  nRows * nColumns
            if ysum is not None:
                firstSpectrum = ysum
            elif weightPolicy == 1:
                # we need to calculate the sum spectrum to derive the uncertainties
                totalSpectra = data.shape[0] * data.shape[1]
                jStep = min(5000, data.shape[1])
                ysum = numpy.zeros((data.shape[mcaIndex],), numpy.float)
                for i in range(0, data.shape[0]):
                    if i == 0:
                        chunk = numpy.zeros((data.shape[0], jStep), numpy.float)
                    jStart = 0
                    while jStart < data.shape[1]:
                        jEnd = min(jStart + jStep, data.shape[1])
                        ysum += data[i, jStart:jEnd, :].sum(axis=0, dtype=numpy.float)
                        jStart = jEnd
                firstSpectrum = ysum
            elif not concentrations:
                # just one spectrum is enough for the setup
                firstSpectrum = data[0, 0, :]
            else:
                firstSpectrum = data[0, :, :].sum(axis=0, dtype=numpy.float)

        # make sure we calculate the matrix of the contributions
        self._mcaTheory.enableOptimizedLinearFit()

        # initialize the fit
        # print("xmin = ", xmin)
        # print("xmax = ", xmax)
        # print("firstShape = ", firstSpectrum.shape)
        self._mcaTheory.setData(x=x, y=firstSpectrum, xmin=xmin, xmax=xmax)

        # and initialize the derivatives
        self._mcaTheory.estimate()
        
        # now we can get the derivatives respect to the free parameters
        # These are the "derivatives" respect to the peaks
        # linearMatrix = self._mcaTheory.linearMatrix

        # but we are still missing the derivatives from the background
        nFree = 0
        freeNames = []
        nFreeBackgroundParameters = 0
        for i, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][i] != ClassMcaTheory.Gefit.CFIXED:
                nFree += 1
                freeNames.append(param)
                if i < self._mcaTheory.NGLOBAL:
                    nFreeBackgroundParameters += 1

        #build the matrix of derivatives
        derivatives = None
        idx = 0
        for i, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][i] == ClassMcaTheory.Gefit.CFIXED:
                continue
            deriv= self._mcaTheory.linearMcaTheoryDerivative(self._mcaTheory.parameters,
                                                             i,
                                                             self._mcaTheory.xdata)
            deriv.shape = -1
            if derivatives is None:
                derivatives = numpy.zeros((deriv.shape[0], nFree), numpy.float)
            derivatives[:, idx] = deriv
            idx += 1


        #loop for anchors
        xdata = self._mcaTheory.xdata

        if config['fit']['stripflag']:
            anchorslist = []
            if config['fit']['stripanchorsflag']:
                if config['fit']['stripanchorslist'] is not None:
                    ravelled = numpy.ravel(xdata)
                    for channel in config['fit']['stripanchorslist']:
                        if channel <= ravelled[0]:continue
                        index = numpy.nonzero(ravelled >= channel)[0]
                        if len(index):
                            index = min(index)
                            if index > 0:
                                anchorslist.append(index)
            if len(anchorslist) == 0:
                anchorlist = [0, self._mcaTheory.ydata.size - 1]
            anchorslist.sort()
            
        # find the indices to be used for selecting the appropriate data
        # if the original x data were nor ordered we have a problem
        # TODO: check for original ordering.
        if x is None:
            # we have an enumerated channels axis
            iXMin = xdata[0]
            iXMax = xdata[-1]
        else:
            iXMin = numpy.nonzero(x <= xdata[0])[0][-1]
            iXMax = numpy.nonzero(x >= xdata[-1])[0][0]

        dummySpectrum = firstSpectrum[iXMin:iXMax+1].reshape(-1, 1)
        # print("dummy = ", dummySpectrum.shape)

        # allocate the output buffer
        results = numpy.zeros((nFree, nRows, nColumns), numpy.float32)
        uncertainties = numpy.zeros((nFree, nRows, nColumns), numpy.float32)

        #perform the initial fit
        if DEBUG:
            print("Configuration elapsed = %f"  % (time.time() - t0))
            t0 = time.time()
        totalSpectra = data.shape[0] * data.shape[1]
        jStep = min(100, data.shape[1])
        if weightPolicy == 2:
            SVD = False
            sigma_b = None
        elif weightPolicy == 1:
            # the +1 is to prevent misbehavior due to weights less than 1.0
            sigma_b = 1 + numpy.sqrt(dummySpectrum)/nPixels
            SVD = True
        else:
            SVD = True
            sigma_b = None
        last_svd = None
        for i in range(0, data.shape[0]):
            #print(i)
            #chunks of nColumns spectra
            if i == 0:
                chunk = numpy.zeros((dummySpectrum.shape[0],
                                     jStep),
                                     numpy.float)
            jStart = 0
            while jStart < data.shape[1]:
                jEnd = min(jStart + jStep, data.shape[1])
                chunk[:,:(jEnd - jStart)] = data[i, jStart:jEnd, iXMin:iXMax+1].T
                if config['fit']['stripflag']:
                    for k in range(jStep):
                        # obtain the smoothed spectrum
                        background=SpecfitFuns.SavitskyGolay(chunk[:, k], 
                                                config['fit']['stripfilterwidth'])
                        lastAnchor = 0
                        for anchor in anchorslist:
                            if (anchor > lastAnchor) and (anchor < background.size):
                                background[lastAnchor:anchor] =\
                                        SpecfitFuns.snip1d(background[lastAnchor:anchor],
                                                           config['fit']['snipwidth'],
                                                           0)
                                lastAnchor = anchor
                        if lastAnchor < background.size:
                            background[lastAnchor:] =\
                                    SpecfitFuns.snip1d(background[lastAnchor:],
                                                       config['fit']['snipwidth'],
                                                       0)
                        chunk[:, k] -= background

                # perform the multiple fit to all the spectra in the chunk
                #print("SHAPES")
                #print(derivatives.shape)
                #print(chunk[:,:(jEnd - jStart)].shape)
                ddict=lstsq(derivatives, chunk[:,:(jEnd - jStart)],
                            sigma_b=sigma_b,
                            weight=weight,
                            digested_output=True,
                            svd=SVD,
                            last_svd=last_svd)
                last_svd = ddict.get('svd', None)
                parameters = ddict['parameters'] 
                results[:, i, jStart:jEnd] = parameters
                uncertainties[:, i, jStart:jEnd] = ddict['uncertainties']
                jStart = jEnd
        if DEBUG:
            t = time.time() - t0
            print("First fit elapsed = %f" % t)
            print("Spectra per second = %f" % (data.shape[0]*data.shape[1]/float(t)))
            t0 = time.time()

        # cleanup zeros
        # start with the parameter with the largest amount of negative values
        negativePresent = True
        nFits = 0
        while negativePresent:
            zeroList = []
            for i in range(nFree):
                #we have to skip the background parameters
                if i >= nFreeBackgroundParameters:
                    t = results[i] < 0
                    if t.sum() > 0:
                        zeroList.append((t.sum(), i, t))

            if len(zeroList) == 0:
                negativePresent = False
                continue

            if nFits > (2 * (nFree - nFreeBackgroundParameters)):
                # we are probably in an endless loop
                # force negative pixels
                for item in zeroList:
                    i = item[1]
                    badMask = item[2]
                    results[i][badMask] = 0.0
                    print("WARNING: %d pixels of parameter %s set to zero" % (item[0], freeNames[i]))
                continue
            zeroList.sort()
            zeroList.reverse()
            
            badParameters = []
            badParameters.append(zeroList[0][1])
            badMask = zeroList[0][2]
            if 1:
                # prevent and endless loop if two or more parameters have common pixels where they are
                # negative and one of them remains negative when forcing other one to zero
                for i, item in enumerate(zeroList):
                    if item[1] not in badParameters:
                        if item[0] > 0:
                            #check if they have common negative pixels
                            t = badMask * item[-1]
                            if t.sum() > 0:
                                badParameters.append(item[1])
                                badMask = t
            if badMask.sum() < (0.0025 * nPixels):
                # fit not worth
                for i in badParameters:
                    results[i][badMask] = 0.0
                    uncertainties[i][badMask] = 0.0
                    if DEBUG:
                        print("WARNING: %d pixels of parameter %s set to zero" % (badMask.sum(),
                                                                                  freeNames[i]))
            else:
                if DEBUG:
                    print("Number of secondary fits = %d" % (nFits + 1))
                nFits += 1
                A = derivatives[:, [i for i in range(nFree) if i not in badParameters]]
                #assume we'll not have too many spectra
                spectra = data[badMask, iXMin:iXMax+1]
                spectra.shape = badMask.sum(), -1
                spectra = spectra.T
                # 
                if config['fit']['stripflag']:
                    for k in range(spectra.shape[1]):
                        # obtain the smoothed spectrum
                        background=SpecfitFuns.SavitskyGolay(spectra[:, k], 
                                                config['fit']['stripfilterwidth'])
                        lastAnchor = 0
                        for anchor in anchorslist:
                            if (anchor > lastAnchor) and (anchor < background.size):
                                background[lastAnchor:anchor] =\
                                        SpecfitFuns.snip1d(background[lastAnchor:anchor],
                                                           config['fit']['snipwidth'],
                                                           0)
                                lastAnchor = anchor
                        if lastAnchor < background.size:
                            background[lastAnchor:] =\
                                    SpecfitFuns.snip1d(background[lastAnchor:],
                                                       config['fit']['snipwidth'],
                                                       0)
                    spectra[:, k] -= background
                ddict = lstsq(A, spectra,
                              sigma_b=sigma_b,
                              weight=weight,
                              digested_output=True,
                              svd=SVD)
                idx = 0
                for i in range(nFree):
                    if i in badParameters:
                        results[i][badMask] = 0.0
                        uncertainties[i][badMask] = 0.0
                    else:
                        results[i][badMask] = ddict['parameters'][idx]
                        uncertainties[i][badMask] = ddict['uncertainties'][idx]
                        idx += 1

        if DEBUG:
            t = time.time() - t0
            print("Fit of negative peaks elapsed = %f" % t)
            t0 = time.time()

        outputDict = {'parameters':results, 'uncertainties':uncertainties, 'names':freeNames}
        
        if concentrations:
            # check if an internal reference is used and if it is set to auto
            ####################################################
            # CONCENTRATIONS
            cTool = ConcentrationsTool.ConcentrationsTool()
            cToolConf = cTool.configure()
            cToolConf.update(config['concentrations'])

            fitFirstSpectrum = False
            if config['concentrations']['usematrix']:
                if DEBUG:
                    print("USING MATRIX")
                if config['concentrations']['reference'].upper() == "AUTO":
                    fitFirstSpectrum = True

            fitresult = {}
            if fitFirstSpectrum:
                # we have to fit the "reference" spectrum just to get the reference element
                mcafitresult = self._mcaTheory.startfit(digest=0, linear=True)
                # if one of the elements has zero area this cannot be made directly
                fitresult['result'] = self._mcaTheory.imagingDigestResult()
                fitresult['result']['config'] = config
                concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                    fitresult=fitresult,
                                                    elementsfrommatrix=False,
                                                    fluorates=self._mcaTheory._fluoRates,
                                                    addinfo=True)
                # and we have to make sure that all the areas are positive
                for group in fitresult['result']['groups']:
                    if fitresult['result'][group]['fitarea'] <= 0.0:
                        # give a tiny area
                        fitresult['result'][group]['fitarea'] = 1.0e-6
                config['concentrations']['reference'] = addInfo['ReferenceElement']
            else:
                fitresult['result'] = {}
                fitresult['result']['config'] = config
                fitresult['result']['groups'] = []
                idx = 0
                for i, param in enumerate(self._mcaTheory.PARAMETERS):
                    if self._mcaTheory.codes[0][i] == Gefit.CFIXED:
                        continue
                    if i < self._mcaTheory.NGLOBAL:
                        # background
                        pass
                    else:
                        fitresult['result']['groups'].append(param)
                        fitresult['result'][param] = {}
                        # we are just interested on the factor to be applied to the area to get the
                        # concentrations
                        fitresult['result'][param]['fitarea'] = 1.0
                        fitresult['result'][param]['sigmaarea'] = 1.0
                    idx += 1
            concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                    fitresult=fitresult,
                                                    elementsfrommatrix=False,
                                                    fluorates=self._mcaTheory._fluoRates,
                                                    addinfo=True)
            nValues = 1
            if len(concentrationsResult['layerlist']) > 1:
                nValues += len(concentrationsResult['layerlist'])
            nElements = len(list(concentrationsResult['mass fraction'].keys()))
            massFractions = numpy.zeros((nValues * nElements, nRows, nColumns),
                                        numpy.float32)


            referenceElement = addInfo['ReferenceElement'] 
            referenceTransitions = addInfo['ReferenceTransitions']
            if DEBUG:
                print("Reference <%s>  transition <%s>" % (referenceElement, referenceTransitions))
            if referenceElement in ["", None, "None"]:
                if DEBUG:
                    print("No reference")
                counter = 0
                for i, group in enumerate(fitresult['result']['groups']):
                    if group.lower().startswith("scatter"):
                        if DEBUG:
                            print("skept %s" % group)
                        continue
                    outputDict['names'].append("C(%s)" % group)
                    massFractions[counter] = results[nFreeBackgroundParameters+i] *\
                        (concentrationsResult['mass fraction'][group]/fitresult['result'][param]['fitarea'])
                    if len(concentrationsResult['layerlist']) > 1:
                        for layer in concentrationsResult['layerlist']:
                            outputDict['names'].append("C(%s)-%s" % (group, layer))
                            massFractions[counter] = results[nFreeBackgroundParameters+i] *\
                        (concentrationsResult[layer]['mass fraction'][group]/fitresult['result'][param]['fitarea'])
            else:
                if DEBUG:
                    print("With reference")
                idx = None
                testGroup = referenceElement+ " " + referenceTransitions.split()[0]
                for i, group in enumerate(fitresult['result']['groups']):
                    if group == testGroup:
                        idx = i
                if idx is None:
                    raise ValueError("Invalid reference:  <%s> <%s>" %\
                                     (referenceElement, referenceTransitions))

                group = fitresult['result']['groups'][idx]
                referenceArea = fitresult['result'][group]['fitarea']
                referenceConcentrations = concentrationsResult['mass fraction'][group]
                goodIdx = results[nFreeBackgroundParameters+idx] > 0
                massFractions[idx] = referenceConcentrations
                counter = 0
                for i, group in enumerate(fitresult['result']['groups']):
                    if group.lower().startswith("scatter"):
                        if DEBUG:
                            print("skept %s" % group)
                        continue
                    outputDict['names'].append("C(%s)" % group)
                    if i == idx:
                        continue
                    goodI = results[nFreeBackgroundParameters+i] > 0
                    tmp = results[nFreeBackgroundParameters+idx][goodI]
                    massFractions[i][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\
                                ((referenceArea/fitresult['result'][group]['fitarea']) *\
                                (concentrationsResult['mass fraction'][group]))
                    if len(concentrationsResult['layerlist']) > 1:
                        for layer in concentrationsResult['layerlist']:
                            outputDict['names'].append("C(%s)-%s" % (group, layer))
                            massFractions[i][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\
                                ((referenceArea/fitresult['result'][group]['fitarea']) *\
                                (concentrationsResult[layer]['mass fraction'][group]))
            outputDict['concentrations'] = massFractions
            if DEBUG:
                t = time.time() - t0
                print("Calculation of concentrations elapsed = %f" % t)
                t0 = time.time()

            ####################################################
        return outputDict
        
if __name__ == "__main__":
    DEBUG = True
    import glob
    from PyMca.PyMcaIO import EDFStack
    if 1:
        #configurationFile = "G4-4720eV-NOWEIGHT-NO_Constant-batch.cfg"
        configurationFile = "G4-4720eV-WEIGHT-NO_Constant-batch.cfg"
        fileList = glob.glob("E:\DATA\COTTE\CH1777\G4_mca_0012_0000_*.edf")
        concentrations = False
        dataStack = EDFStack.EDFStack(filelist=fileList)
    elif 0:
        configurationFile = "D:\RIVARD\config_3-6kev_OceanIsland_batch_NO_BACKGROUND.cfg"
        fileList = glob.glob("D:\RIVARD\m*.edf")
        concentrations = False
        dataStack = EDFStack.EDFStack(filelist=fileList)
    else:
        configurationFile = "E2_line.cfg"
        fileList = glob.glob("E:\DATA\PyMca-Training\FDM55\AS_EDF\E2_line*.edf")
        concentrations = False
        dataStack = EDFStack.EDFStack(filelist=fileList)

    t0 = time.time()
    fastFit = FastXRFLinearFit()
    fastFit.setFitConfigurationFile(configurationFile)
    print("Main configuring Elapsed = % s " % (time.time() - t0))
    results = fastFit.fitMultipleSpectra(y=dataStack,
                                         concentrations=concentrations)
    print("Total Elapsed = % s " % (time.time() - t0))