This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/tests/ElementsTest.py is in pymca 4.7.4+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#/*##########################################################################
# Copyright (C) 2004 - 2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This file is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
import unittest
import os
import numpy

DEBUG = 0

class testElements(unittest.TestCase):
    ELEMENTS = ['H', 'He', 
                'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',
                'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar',
                'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe',
                'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se',
                'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo',
                'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn',
                'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce',
                'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 
                'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 
                'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 
                'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 
                'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 
                'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 
                'Bh', 'Hs', 'Mt']

    def setUp(self):
        """
        Get the data directory
        """
        try:
            from PyMca import PyMcaDataDir
            self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR
        except:
            self.dataDir = None
        from PyMca import Elements
        self._elements = Elements

    def testDataDirectoryPresence(self):
        # Testing directory presence
        try:
            self.assertTrue(self.dataDir is not None)
            self.assertTrue(os.path.exists(self.dataDir))
            self.assertTrue(os.path.isdir(self.dataDir))
        except:
            print("\n Cannot find PyMcaData directory: %s" % self.dataDir)
            raise

    def testPeakIdentification(self):
        # energy in keV
        energy = 5.9
        # 10 eV threshold
        threshold = 0.010
        lines = self._elements.getcandidates(energy,
                                             threshold=threshold,
                                             targetrays=['K'])
        self.assertTrue(len(lines[0]['elements']) == 1)
        self.assertTrue(lines[0]['energy'] == energy)
        self.assertTrue(lines[0]['elements'][0] == 'Mn')

        energy = 10.550
        threshold = 0.030
        lines = self._elements.getcandidates(energy,
                                             threshold=threshold,
                                             targetrays=['K'])
        self.assertTrue(len(lines[0]['elements']) == 1)
        self.assertTrue(lines[0]['energy'] == energy)
        self.assertTrue('As' in lines[0]['elements'])
        self.assertTrue('Pb' not in lines[0]['elements'])

        # Test K and L lines
        lines = self._elements.getcandidates(energy,
                                             threshold=threshold,
                                             targetrays=['K', 'L'])
        self.assertTrue(len(lines[0]['elements']) > 1)
        self.assertTrue('As' in lines[0]['elements'])
        self.assertTrue('Pb' in lines[0]['elements'])

        # Test all
        energy = 2.280
        threshold = 0.030
        lines = self._elements.getcandidates(energy,
                                             threshold=threshold)
        self.assertTrue(len(lines[0]['elements']) > 1)
        self.assertTrue('As' not in lines[0]['elements'])
        self.assertTrue('Pb' not in lines[0]['elements'])
        self.assertTrue('S' in lines[0]['elements'])
        self.assertTrue('Hg' in lines[0]['elements'])

    def testElementCrossSectionsReadout(self):
        if DEBUG:
            print()
            print("Test XCOM Cross Sections Readout")
        from PyMca import specfile
        xcomFile = os.path.join(self.dataDir, 'XCOM_CrossSections.dat')
        sf = specfile.Specfile(xcomFile)
        for ele in ['Si', 'Fe', 'Pb', 'U']:
            if DEBUG:
                print("Testing element %s" % ele)
            z = self._elements.getz(ele)
            scan = sf[z-1]
            xcomLabels = scan.alllabels()
            self.assertTrue('ENERGY' in xcomLabels[0].upper())
            self.assertTrue('COHERENT' in xcomLabels[1].upper())
            self.assertTrue('COMPTON' in xcomLabels[2].upper())
            self.assertTrue('PHOTO' in xcomLabels[-3].upper())
            self.assertTrue('PAIR' in xcomLabels[-2].upper())
            self.assertTrue('TOTAL' in xcomLabels[-1].upper())
            xcomData = scan.data()
            
            # WARNING: This call is to read XCOM data
            # only in case energy is None the data are the same as
            # those found later on in the 'xcom' key of the element.
            data = self._elements.getelementmassattcoef(ele, energy=None)

            # The original data are in the xcom key
            data = self._elements.Element[ele]['xcom']

            # Energy grid
            self.assertTrue(numpy.allclose(data['energy'],
                                           xcomData[0, :]))

            # Test the different cross sections
            self.assertTrue(numpy.allclose(data['coherent'],
                                           xcomData[1, :]))
            self.assertTrue(numpy.allclose(data['compton'],
                                           xcomData[2, :]))
            self.assertTrue(numpy.allclose(data['photo'],
                                           xcomData[-3, :]))
            self.assertTrue(numpy.allclose(data['pair'],
                                           xcomData[-2, :]))
            self.assertTrue(numpy.allclose(data['total'],
                                           xcomData[-1, :]))
            total = xcomData[1, :] + xcomData[2, :] +\
                    xcomData[-3, :] + xcomData[-2, :]

            # Check the total is self-consistent
            self.assertTrue(numpy.allclose(total, xcomData[-1, :]))

    def getCrossSections(self, element, energy):
        # perform log-log interpolation in the read data
        # to see if we get the same results
        # now perform a log-log interpolation when needed
        # lin-lin interpolation:
        #
        #              y0 (x1-x) + y1 (x-x0)
        #        y = -------------------------
        #                     x1 - x0
        #
        # log-log interpolation:
        #
        #                  log(y0) * log(x1/x) + log(y1) * log(x/x0)
        #        log(y) = ------------------------------------------
        #                                  log (x1/x0)
        #
        
        log = numpy.log10

        # make sure data for the element are loaded
        # the test for proper loading is made somewhere else
        self._elements.getelementmassattcoef(element)

        # and work with them
        xcomData = self._elements.Element[element]['xcom']

        i0 = numpy.nonzero(xcomData['energy'] <= energy)[0].max()
        i1 = numpy.nonzero(xcomData['energy'] >= energy)[0].min()
        x = numpy.array(energy)
        x0 = xcomData['energy'][i0]
        x1 = xcomData['energy'][i1]
        ddict = {}
        total = 0.0
        for key in ['coherent', 'compton', 'photo']:
            y0 = xcomData[key][i0]
            y1 = xcomData[key][i1]
            if x1 != x0:
                logy = (log(y0) * log(x1/x) + log(y1) * log(x/x0))\
                               /log(x1/x0)
                y = pow(10.0, logy)
            else:
                y = y1
            ddict[key] = y
            total += y
        ddict['total'] = total
        return ddict

    def testElementCrossSectionsCalculation(self):
        if DEBUG:
            print()
            print("Testing Element Mass Attenuation Cross Sections Calculation")

        for ele in ['Ge', 'Mn', 'Au', 'U']:
            if DEBUG:
                print("Testing element = %s" % ele)
            # take a set of energies not present in the grid
            energyList = [1.0533, 2.03166, 5.82353, 10.3123, 24.7431]
            data = self._elements.getelementmassattcoef(ele,
                                                        energy=energyList)
            energyIndex = 0
            for x in energyList:
                if DEBUG:
                    print("Testing energy %f" % x)
                refData = self.getCrossSections(ele, x)
                for key in ['coherent', 'compton', 'photo', 'total']:
                    if DEBUG:
                        print("Testing key = %s" % key)
                    yRef = refData[key]
                    yTest = data[key][energyIndex]
                    self.assertTrue((100.0 * abs(yTest-yRef)/yRef) < 0.01)
                energyIndex += 1

    def testMaterialCrossSectionsCalculation(self):
        if DEBUG:
            print()
            print("Testing Material Mass Attenuation Cross Sections Calculation")

        formulae = ['H2O1', 'Hg1S1', 'Ca1C1O3']
        unpackedFormulae = [(('H', 2), ('O', 1)),
                            (('Hg', 1), ('S', 1)),
                            (('Ca', 1), ('C', 1.0), ('O', 3.0))]

        for i in range(len(unpackedFormulae)):
            if DEBUG:
                print("Testing formula %s" % formulae[i])
            # calculate mass fractions
            totalMass = 0.0
            massFractions = numpy.zeros((len(unpackedFormulae[i]),),
                                            numpy.float)
            j = 0
            for ele, amount in unpackedFormulae[i]:
                tmpValue = amount * self._elements.Element[ele]['mass']
                totalMass += tmpValue
                massFractions[j] = tmpValue
                j += 1
            massFractions /= totalMass

            # the list of energies
            energyList = [1.5, 3.33, 10., 20.4, 30.6, 90.33]

            # get the data to be checked
            data = self._elements.getmassattcoef(formulae[i], energyList)

            energyIndex = 0
            for energy in energyList:
                if DEBUG:
                    print("Testing energy %f" % energy)
                # initialize reference data
                refData = {}
                for key in ['coherent', 'compton', 'photo', 'total']:
                    refData[key] = 0.0

                # calculate reference data
                for j in range(len(unpackedFormulae[i])):
                    ele = unpackedFormulae[i][j][0]
                    tmpData = self.getCrossSections(ele, energy)
                    for key in ['coherent', 'compton', 'photo', 'total']:
                        refData[key] += tmpData[key] * massFractions[j]

                # test
                for key in ['coherent', 'compton', 'photo', 'total']:
                    if DEBUG:
                        print("Testing key %s" % key)
                    yRef = refData[key]
                    yTest = data[key][energyIndex]
                    self.assertTrue((100.0 * abs(yTest-yRef)/yRef) < 0.01)
                energyIndex += 1


def getSuite(auto=True):
    testSuite = unittest.TestSuite()
    if auto:
        testSuite.addTest(\
            unittest.TestLoader().loadTestsFromTestCase(testElements))
    else:
        testSuite.addTest(testElements("testDataDirectoryPresence"))
        testSuite.addTest(testElements("testPeakIdentification"))
        testSuite.addTest(testElements("testElementCrossSectionsReadout"))
        testSuite.addTest(testElements("testElementCrossSectionsCalculation"))
        testSuite.addTest(testElements("testMaterialCrossSectionsCalculation"))
    return testSuite

def test(auto=False):
    unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto))

if __name__ == '__main__':
    DEBUG = 1
    test()