This file is indexed.

/usr/lib/python2.7/dist-packages/chempy/place.py is in pymol 1.7.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#A* -------------------------------------------------------------------
#B* This file contains source code for the PyMOL computer program
#C* copyright 1998-2000 by Warren Lyford Delano of DeLano Scientific. 
#D* -------------------------------------------------------------------
#E* It is unlawful to modify or remove this copyright notice.
#F* -------------------------------------------------------------------
#G* Please see the accompanying LICENSE file for further information. 
#H* -------------------------------------------------------------------
#I* Additional authors of this source file include:
#-* 
#-* 
#-*
#Z* -------------------------------------------------------------------
#
#
#

import bond_amber

from chempy.cpv import *
from chempy import feedback

TET_TAN = 1.41
TRI_TAN = 1.732

#------------------------------------------------------------------------------
def find_known_secondary(model,anchor,known_list):
    at = model.atom[anchor]
    h_list = []
    for id in known_list:
        for b in model.bond[id]:
            atx2 = b.index[0]
            if atx2 == id:
                atx2 = b.index[1]
            if atx2 != anchor: # another bonded atom, not achor
                at2 = model.atom[atx2]
                if at2.has('coord'):
                    if at2.symbol != 'H':
                        return (id,atx2)
                    else:
                        h_list.append((id,atx2))
    if len(h_list): # only return hydrogen as a last resort
        return h_list[0]
    return None

#------------------------------------------------------------------------------
def simple_unknowns(model,bondfield=bond_amber):
    if feedback['actions']:
        print " "+str(__name__)+": placing unknowns..."
    # this can be used to build hydrogens and would robably work for
    # acyclic carbons as well
    if str(model.__class__) != 'chempy.models.Connected':
        raise ValueError('model is not a "Connected" model object')
    if model.nAtom:
        if not model.index:
            model.update_index()
        idx = model.index
        last_count = -1
        while 1:
            need = [ [], [], [], [] ]
            bnd_len = bondfield.length
    # find known atoms with missing neighbors, and keep track of the neighbors
            for a in model.atom:
                if a.has('coord'):
                    miss = []
                    know = []
                    atx1 = idx[id(a)]
                    bnd = model.bond[atx1]
                    for b in bnd:
                        atx2 = b.index[0]
                        if atx2 == atx1:
                            atx2 = b.index[1]
                        at2 = model.atom[atx2]
                        if not at2.has('coord'):
                            miss.append(atx2)
                        else:
                            know.append(atx2)
                    c = len(miss)
                    if c:
                        need[c-1].append((atx1,miss,know))

            for a in need[0]: # missing only one atom
                atx1 = a[0]
                at1 = model.atom[atx1]
                atx2 = a[1][0]
                at2 = model.atom[atx2]
                know = a[2]
                if bondfield.nonlinear.has_key(at1.text_type):
                    near = find_known_secondary(model,atx1,know)
                    if near:
                        at3 = model.atom[near[0]]
                        if bondfield.planer.has_key(at3.text_type): # Phenolic hydrogens, etc.
                            at4 = model.atom[near[1]]
                            d1 = sub(at1.coord,at3.coord)
                            p0 = normalize(d1)
                            d2 = sub(at4.coord,at3.coord)
                            p1 = normalize(cross_product(d2,p0))
                            p2 = normalize(cross_product(p0,p1))                     
                            v = scale(p2,TRI_TAN)
                            v = normalize(add(p0,v))
                            at2.coord = add(at1.coord,scale(v,
                                bnd_len[(at1.text_type,at2.text_type)]))
                        else: # Ser, Cys, Thr hydroxyl hydrogens
                            at4 = model.atom[near[1]]
                            d2 = sub(at3.coord,at4.coord)
                            v = normalize(d2)
                            at2.coord = add(at1.coord,scale(v,
                                bnd_len[(at1.text_type,at2.text_type)]))
                    elif len(know):
                        d2 = [1.0,0,0]
                        at3 = model.atom[know[0]]
                        p0 = normalize(sub(at1.coord,at3.coord))
                        p1 = normalize(cross_product(d2,p0))
                        v = scale(p1,TET_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                                bnd_len[(at1.text_type,at2.text_type)]))
                    else:
                        at2.coord = random_sphere(at1.coord,
                             bnd_len[(at1.text_type,at2.text_type)])
                elif len(know): # linear sum...amide, tbu, etc
                    v = [0.0,0.0,0.0]
                    for b in know:
                        d = sub(at1.coord,model.atom[b].coord)
                        v = add(v,normalize(d))
                    v = normalize(v)
                    at2.coord = add(at1.coord,scale(v,
                         bnd_len[(at1.text_type,at2.text_type)]))
                else:
                    at2.coord = random_sphere(at1.coord,
                          bnd_len[(at1.text_type,at2.text_type)])

            for a in need[1]: # missing two atoms
                atx1 = a[0]
                at1 = model.atom[atx1]
                atx2 = a[1][0]
                at2 = model.atom[atx2]
                know = a[2]
                if bondfield.planer.has_key(at1.text_type): # guanido, etc
                    near = find_known_secondary(model,atx1,know)
                    if near: # 1-4 present
                        at3 = model.atom[near[0]]
                        at4 = model.atom[near[1]]
                        d1 = sub(at1.coord,at3.coord)
                        p0 = normalize(d1)
                        d2 = sub(at4.coord,at3.coord)
                        p1 = normalize(cross_product(d2,p0))
                        p2 = normalize(cross_product(p0,p1))
                        v = scale(p2,TRI_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                          bnd_len[(at1.text_type,at2.text_type)]))                                                         
                        at2 = model.atom[a[1][1]]
                        v = scale(p2,-TRI_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                          bnd_len[(at1.text_type,at2.text_type)]))
                    elif len(know): # no 1-4 found
                        d2 = [1.0,0,0]
                        at3 = model.atom[know[0]]
                        d1 = sub(at1.coord,at3.coord)
                        p0 = normalize(d1)                  
                        p1 = normalize(cross_product(d2,p0))
                        p2 = normalize(cross_product(p0,p1))
                        v = scale(p2,TRI_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                          bnd_len[(at1.text_type,at2.text_type)]))
                        at2 = model.atom[a[1][1]]
                        v = scale(p2,-TRI_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                          bnd_len[(at1.text_type,at2.text_type)]))
                    else:
                        at2.coord = random_sphere(at1.coord,
                            bnd_len[(at1.text_type,at2.text_type)])
                elif len(know)>=2: # simple tetrahedral
                    at3 = model.atom[know[0]]
                    at4 = model.atom[know[1]]
                    v = [0.0,0.0,0.0]
                    d1 = sub(at1.coord,at3.coord)
                    d2 = sub(at1.coord,at4.coord)
                    v = add(normalize(d1),normalize(d2))
                    p0 = normalize(v)
                    p1 = normalize(cross_product(d2,p0))
                    v = scale(p1,TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                            bnd_len[(at1.text_type,at2.text_type)]))
                    at2 = model.atom[a[1][1]]               
                    v = scale(p1,-TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                            bnd_len[(at1.text_type,at2.text_type)]))
                else:
                    if len(know): # sulfonamide? 
                        d2 = [1.0,0,0]
                        at3 = model.atom[know[0]]
                        d1 = sub(at1.coord,at3.coord)
                        p0 = normalize(d1)                                    
                        p1 = normalize(cross_product(d2,p0))
                        v = scale(p1,TET_TAN)
                        v = normalize(add(p0,v))
                        at2.coord = add(at1.coord,scale(v,
                            bnd_len[(at1.text_type,at2.text_type)]))
                    else: # blind
                        at2.coord = random_sphere(at1.coord,
                            bnd_len[(at1.text_type,at2.text_type)])

                        # 2013-08-14 added by thomas
                        raise NotImplementedError("FIXME: at3 unassigned")
                    at4=at2
                    at2=model.atom[a[1][1]]
                    v = [0.0,0.0,0.0]
                    d1 = sub(at1.coord,at3.coord)
                    d2 = sub(at1.coord,at4.coord)
                    v = add(normalize(d1),normalize(d2))
                    p0 = normalize(v)
                    p1 = normalize(cross_product(d2,p0))
                    v = scale(p1,TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                        bnd_len[(at1.text_type,at2.text_type)]))

            for a in need[2]: # missing 3 atoms
                atx1 = a[0]
                at1 = model.atom[atx1]
                atx2 = a[1][0]
                at2 = model.atom[atx2]
                know = a[2]
                near = find_known_secondary(model,atx1,know)
                if near: # 1-4 present
                    at3 = model.atom[near[0]]
                    at4 = model.atom[near[1]]
                    d1 = sub(at1.coord,at3.coord)
                    p0 = normalize(d1)
                    d2 = sub(at4.coord,at3.coord)
                    p1 = normalize(cross_product(d2,p0))
                    p2 = normalize(cross_product(p0,p1))
                    v = scale(p2,-TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                          bnd_len[(at1.text_type,at2.text_type)]))                                                         
                    at4 = at2
                    at2 = model.atom[a[1][1]]
                    d1 = sub(at1.coord,at3.coord)
                    d2 = sub(at1.coord,at4.coord)
                    v = add(normalize(d1),normalize(d2))
                    p0 = normalize(v)
                    p1 = normalize(cross_product(d2,p0))
                    v = scale(p1,TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                            bnd_len[(at1.text_type,at2.text_type)]))
                    at2 = model.atom[a[1][2]]               
                    v = scale(p1,-TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                            bnd_len[(at1.text_type,at2.text_type)]))
                elif len(know): # fall-back
                    d2 = [1.0,0,0]
                    at3 = model.atom[know[0]]                  

                    # 2013-08-14 added by thomas, not sure if this is correct
                    d1 = sub(at1.coord,at3.coord)
                    p0 = normalize(d1)

                    p1 = normalize(cross_product(d2,p0))
                    v = scale(p1,TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                        bnd_len[(at1.text_type,at2.text_type)]))
                    at4=at2
                    at2=model.atom[a[1][1]]
                    v = [0.0,0.0,0.0]
                    d1 = sub(at1.coord,at3.coord)
                    d2 = sub(at1.coord,at4.coord)
                    v = add(normalize(d1),normalize(d2))
                    p0 = normalize(v)
                    p1 = normalize(cross_product(d2,p0))
                    v = scale(p1,TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                        bnd_len[(at1.text_type,at2.text_type)]))
                    at2=model.atom[a[1][2]]
                    v = scale(p1,-TET_TAN)
                    v = normalize(add(p0,v))
                    at2.coord = add(at1.coord,scale(v,
                        bnd_len[(at1.text_type,at2.text_type)]))
                else: # worst case: add one and get rest next time around
                    at2.coord=random_sphere(at2.coord,
                        bnd_len[(at1.text_type,at2.text_type)])

            for a in need[3]: # missing 4 atoms
                atx1 = a[0]
                at1 = model.atom[atx1]
                atx2 = a[1][0]
                at2 = model.atom[atx2]
                # add coordinate and get the rest next time around
                at2.coord=random_sphere(at2.coord,
                     bnd_len[(at1.text_type,at2.text_type)])

            c = 0
            for a in model.atom:
                if not a.has('coord'):
                    c = c + 1
            if not c:
                break;
            if c==last_count:
                break;
            last_count = c


#------------------------------------------------------------------------------
def test_random():
    '''
    This is a simple test function which drops most coordinates from a
    polypeptide and tries to reposition them with simple_unknowns().

    Works fine to position hydrogens, fails to position other atoms.
    '''
    import random
    from pymol import cmd
    from chempy.champ import assign
    cmd.fab('ACDEFGHIKLMNPQRSTVWY', 'm0')
    assign.amber99()
    for i in xrange(100):
        m = cmd.get_model('m0').convert_to_connected()
        for a in m.atom:
            if random.random() < 0.8:
                del a.coord
        simple_unknowns(m)
        cmd.load_model(m.convert_to_indexed(), 'm' + str(i + 1))