This file is indexed.

/usr/lib/python2.7/dist-packages/chaco/lineplot.py is in python-chaco 4.4.1-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
""" Defines the LinePlot class.
"""

from __future__ import with_statement

# Standard library imports
import warnings

# Major library imports
from numpy import argsort, array, concatenate, inf, invert, isnan, \
                  take, transpose, zeros, sqrt, argmin, clip, column_stack

# Enthought library imports
from enable.api import black_color_trait, ColorTrait, LineStyle
from traits.api import Enum, Float, List, Str, Property, Tuple, cached_property
from traitsui.api import Item, View

# Local relative imports
from base import arg_find_runs, bin_search, reverse_map_1d
from base_xy_plot import BaseXYPlot



class LinePlot(BaseXYPlot):
    """ A plot consisting of a line.

    This is the most fundamental object to use to create line plots. However,
    it is somewhat low-level and therefore creating one properly to do what
    you want can require some verbose code. The create_line_plot() function
    in plot_factory.py can hide some of this verbosity for common cases.
    """
    # The color of the line.
    color = black_color_trait

    # The RGBA tuple for rendering lines.  It is always a tuple of length 4.
    # It has the same RGB values as color_, and its alpha value is the alpha
    # value of self.color multiplied by self.alpha. 
    effective_color = Property(Tuple, depends_on=['color', 'alpha'])

    # The color to use to highlight the line when selected.
    selected_color = ColorTrait("lightyellow")

    # The style of the selected line.
    selected_line_style = LineStyle("solid")

    # The name of the key in self.metadata that holds the selection mask
    metadata_name = Str("selections")

    # The thickness of the line.
    line_width = Float(1.0)

    # The line dash style.
    line_style = LineStyle

    # The rendering style of the line plot.
    #
    # connectedpoints
    #     "normal" style (default); each point is connected to subsequent and
    #     prior points by line segments
    # hold
    #     each point is represented by a line segment parallel to the abscissa
    #     (index axis) and spanning the length between the point and its
    #     subsequent point.
    # connectedhold
    #     like "hold" style, but line segments are drawn at each point of the
    #     plot to connect the hold lines of the prior point and the current
    #     point.  Also called a "right angle plot".
    render_style = Enum("connectedpoints", "hold", "connectedhold")

    # Traits UI View for customizing the plot.
    traits_view = View(Item("color", style="custom"), "line_width", "line_style",
                       buttons=["OK", "Cancel"])

    #------------------------------------------------------------------------
    # Private traits
    #------------------------------------------------------------------------

    # Cached list of non-NaN arrays of (x,y) data-space points; regardless of
    # self.orientation, this is always stored as (index_pt, value_pt).  This is
    # different from the default BaseXYPlot definition.
    _cached_data_pts = List

    # Cached list of non-NaN arrays of (x,y) screen-space points.
    _cached_screen_pts = List


    def hittest(self, screen_pt, threshold=7.0, return_distance = False):
        """
        Tests whether the given screen point is within *threshold* pixels of
        any data points on the line.  If so, then it returns the (x,y) value of
        a data point near the screen point.  If not, then it returns None.
        """

        # First, check screen_pt is directly on a point in the lineplot
        ndx = self.map_index(screen_pt, threshold)
        if ndx is not None:
            # screen_pt is one of the points in the lineplot
            data_pt = (self.index.get_data()[ndx], self.value.get_data()[ndx])
            if return_distance:
                scrn_pt = self.map_screen(data_pt)
                dist = sqrt((screen_pt[0] - scrn_pt[0])**2
                            + (screen_pt[1] - scrn_pt[1])**2)
                return (data_pt[0], data_pt[1], dist)
            else:
                return data_pt
        else:
            # We now must check the lines themselves

            # Must check all lines within threshold along the major axis,
            # so determine the bounds of the region of interest in dataspace
            if self.orientation == "h":
                dmax = self.map_data((screen_pt[0]+threshold, screen_pt[1]))
                dmin = self.map_data((screen_pt[0]-threshold, screen_pt[1]))
            else:
                dmax = self.map_data((screen_pt[0], screen_pt[1]+threshold))
                dmin = self.map_data((screen_pt[0], screen_pt[1]-threshold))

            xmin, xmax = self.index.get_bounds()

            # Now compute the bounds of the region of interest as indexes
            if dmin < xmin:
                ndx1 = 0
            elif dmin > xmax:
                ndx1 = len(self.value.get_data())-1
            else:
                ndx1 = reverse_map_1d(self.index.get_data(), dmin,
                                      self.index.sort_order)
            if dmax < xmin:
                ndx2 = 0
            elif dmax > xmax:
                ndx2 = len(self.value.get_data())-1
            else:
                ndx2 = reverse_map_1d(self.index.get_data(), dmax,
                                      self.index.sort_order)

            start_ndx = max(0, min(ndx1-1, ndx2-1,))
            end_ndx = min(len(self.value.get_data())-1, max(ndx1+1, ndx2+1))

            # Compute the distances to all points in the range of interest
            start = array([ self.index.get_data()[start_ndx:end_ndx],
                            self.value.get_data()[start_ndx:end_ndx] ])
            end = array([ self.index.get_data()[start_ndx+1:end_ndx+1],
                            self.value.get_data()[start_ndx+1:end_ndx+1] ])

            # Convert to screen points
            s_start = transpose(self.map_screen(transpose(start)))
            s_end = transpose(self.map_screen(transpose(end)))

            # t gives the parameter of the closest point to screen_pt
            # on the line going from s_start to s_end
            t = _closest_point(screen_pt, s_start, s_end)

            # Restrict to points on the line segment s_start->s_end
            t = clip(t, 0, 1)

            # Gives the corresponding point on the line
            px, py = _t_to_point(t, s_start, s_end)

            # Calculate distances
            dist =  sqrt((px - screen_pt[0])**2 +
                         (py - screen_pt[1])**2)

            # Find the minimum
            n = argmin(dist)
            # And return if it is good
            if dist[n] <= threshold:
                best_pt = self.map_data((px[n], py[n]), all_values=True)

                if return_distance:
                    return [best_pt[0], best_pt[1], dist[n]]
                else:
                    return best_pt

            return None

    def interpolate(self, index_value):
        """
        Returns the value of the plot at the given index value in screen space.
        Raises an IndexError when *index_value* exceeds the bounds of indexes on
        the value.
        """

        if self.index is None or self.value is None:
            raise IndexError, "cannot index when data source index or value is None"

        index_data = self.index.get_data()
        value_data = self.value.get_data()

        ndx = reverse_map_1d(index_data, index_value, self.index.sort_order)

        # quick test to see if this value is already in the index array
        if index_value == index_data[ndx]:
            return value_data[ndx]

        # get x and y values to interpolate between
        if index_value < index_data[ndx]:
            x0 = index_data[ndx - 1]
            y0 = value_data[ndx - 1]
            x1 = index_data[ndx]
            y1 = value_data[ndx]
        else:
            x0 = index_data[ndx]
            y0 = value_data[ndx]
            x1 = index_data[ndx + 1]
            y1 = value_data[ndx + 1]

        if x1 != x0:
            slope = float(y1 - y0)/float(x1 - x0)
            dx = index_value - x0
            yp = y0 + slope * dx
        else:
            yp = inf

        return yp

    def get_screen_points(self):
        self._gather_points()
        return [self.map_screen(ary) for ary in self._cached_data_pts]

    #------------------------------------------------------------------------
    # Private methods; implements the BaseXYPlot stub methods
    #------------------------------------------------------------------------

    def _gather_points(self):
        """
        Collects the data points that are within the bounds of the plot and
        caches them.
        """
        if not self._cache_valid:

            if not self.index or not self.value:
                return

            index = self.index.get_data()
            value = self.value.get_data()

            # Check to see if the data is completely outside the view region
            for ds, rng in ((self.index, self.index_range), (self.value, self.value_range)):
                low, high = ds.get_bounds()
                if low > rng.high or high < rng.low:
                    self._cached_data_pts = []
                    self._cached_valid = True
                    return

            if len(index) == 0 or len(value) == 0 or len(index) != len(value):
                self._cached_data_pts = []
                self._cache_valid = True

            size_diff = len(value) - len(index)
            if size_diff > 0:
                warnings.warn('Chaco.LinePlot: len(value) %d - len(index) %d = %d\n' \
                              % (len(value), len(index), size_diff))
                index_max = len(index)
                value = value[:index_max]
            else:
                index_max = len(value)
                index = index[:index_max]

            # TODO: restore the functionality of rendering highlighted portions
            # of the line
            #selection = self.index.metadata.get(self.metadata_name, None)
            #if selection is not None and type(selection) in (ndarray, list) and \
            #        len(selection) > 0:

            # Split the index and value raw data into non-NaN chunks
            nan_mask = invert(isnan(value)) & invert(isnan(index))
            blocks = [b for b in arg_find_runs(nan_mask, "flat") if nan_mask[b[0]] != 0]

            points = []
            for block in blocks:
                start, end = block
                block_index = index[start:end]
                block_value = value[start:end]
                index_mask = self.index_mapper.range.mask_data(block_index)

                runs = [r for r in arg_find_runs(index_mask, "flat") \
                        if index_mask[r[0]] != 0]

                # Check to see if our data view region is between two points in the
                # index data.  If so, then we have to reverse map our current view
                # into the appropriate index and draw the bracketing points.
                if runs == []:
                    data_pt = self.map_data((self.x_mapper.low_pos, self.y_mapper.low_pos))
                    if self.index.sort_order == "none":
                        indices = argsort(index)
                        sorted_index = take(index, indices)
                        sorted_value = take(value, indices)
                        sort = 1
                    else:
                        sorted_index = index
                        sorted_value = value
                        if self.index.sort_order == "ascending":
                            sort = 1
                        else:
                            sort = -1
                    ndx = bin_search(sorted_index, data_pt, sort)
                    if ndx == -1:
                        # bin_search can return -1 if data_pt is outside the bounds
                        # of the source data
                        continue

                    points.append(transpose(array((sorted_index[ndx:ndx+2],
                                                   sorted_value[ndx:ndx+2]))))

                else:
                    # Expand the width of every group of points so we draw the lines
                    # up to their next point, outside the plot area
                    data_end = len(index_mask)
                    for run in runs:
                        start, end = run
                        if start != 0:
                            start -= 1
                        if end != data_end:
                            end += 1

                        run_data = ( block_index[start:end],
                                     block_value[start:end] )
                        run_data = column_stack(run_data)

                        points.append(run_data)

            self._cached_data_pts = points
            self._cache_valid = True
        return

    def _downsample(self):
        if not self._screen_cache_valid:
            self._cached_screen_pts = [self.map_screen(p) for p in self._cached_data_pts]
            self._screen_cache_valid = True

            pt_arrays = self._cached_screen_pts

            # some boneheaded short-circuits
            m = self.index_mapper
            total_numpoints = sum([p.shape for p in pt_arrays])
            if (total_numpoints < 400) or (total_numpoints < m.high_pos - m.low_pos):
                return self._cached_screen_pts

            # the new point array and a counter of how many actual points we've added
            # to it
            new_arrays = []
            for pts in pt_arrays:
                new_pts = zeros(pts.shape, "d")
                numpoints = 1
                new_pts[0] = pts[0]

                last_x, last_y = pts[0]
                for x, y in pts[1:]:
                    if (x-last_x)**2 + (y-last_y)**2 > 2:
                        new_pts[numpoints] = (x,y)
                        last_x = x
                        last_y = y
                        numpoints += 1

                new_arrays.append(new_pts[:numpoints])
        return self._cached_screen_pts

    def _render(self, gc, points, selected_points=None):
        if len(points) == 0:
            return

        with gc:
            gc.set_antialias(True)
            gc.clip_to_rect(self.x, self.y, self.width, self.height)

            render_method_dict = {
                    "hold": self._render_hold,
                    "connectedhold": self._render_connected_hold,
                    "connectedpoints": self._render_normal
                    }
            render = render_method_dict.get(self.render_style, self._render_normal)

            if selected_points is not None:
                gc.set_stroke_color(self.selected_color_)
                gc.set_line_width(self.line_width+10.0)
                gc.set_line_dash(self.selected_line_style_)
                render(gc, selected_points, self.orientation)

            # Render using the normal style
            gc.set_stroke_color(self.effective_color)
            gc.set_line_width(self.line_width)
            gc.set_line_dash(self.line_style_)
            render(gc, points, self.orientation)

            # Draw the default axes, if necessary
            self._draw_default_axes(gc)

    @classmethod
    def _render_normal(cls, gc, points, orientation):
        for ary in points:
            if len(ary) > 0:
                gc.begin_path()
                gc.lines(ary)
                gc.stroke_path()
        return

    @classmethod
    def _render_hold(cls, gc, points, orientation):
        for starts in points:
            x,y = starts.T
            if orientation == "h":
                ends = transpose(array( (x[1:], y[:-1]) ))
            else:
                ends = transpose(array( (x[:-1], y[1:]) ))
            gc.begin_path()
            gc.line_set(starts[:-1], ends)
            gc.stroke_path()
        return

    @classmethod
    def _render_connected_hold(cls, gc, points, orientation):
        for starts in points:
            x,y = starts.T
            if orientation == "h":
                ends = transpose(array( (x[1:], y[:-1]) ))
            else:
                ends = transpose(array( (x[:-1], y[1:]) ))
            gc.begin_path()
            gc.line_set(starts[:-1], ends)
            gc.line_set(ends, starts[1:])
            gc.stroke_path()
        return

    def _render_icon(self, gc, x, y, width, height):
        with gc:
            gc.set_stroke_color(self.effective_color)
            gc.set_line_width(self.line_width)
            gc.set_line_dash(self.line_style_)
            gc.set_antialias(0)
            gc.move_to(x, y+height/2)
            gc.line_to(x+width, y+height/2)
            gc.stroke_path()
        return

    def _downsample_vectorized(self):
        """
        Analyzes the screen-space points stored in self._cached_data_pts
        and replaces them with a downsampled set.
        """
        pts = self._cached_screen_pts  #.astype(int)

        # some boneheaded short-circuits
        m = self.index_mapper
        if (pts.shape[0] < 400) or (pts.shape[0] < m.high_pos - m.low_pos):
            return

        pts2 = concatenate((array([[0.0,0.0]]), pts[:-1]))
        z = abs(pts - pts2)
        d = z[:,0] + z[:,1]
        #... TODO ...
        return

    def _alpha_changed(self):
        self.invalidate_draw()
        self.request_redraw()
        return

    def _color_changed(self):
        self.invalidate_draw()
        self.request_redraw()
        return

    def _line_style_changed(self):
        self.invalidate_draw()
        self.request_redraw()
        return

    def _line_width_changed(self):
        self.invalidate_draw()
        self.request_redraw()
        return

    def __getstate__(self):
        state = super(LinePlot,self).__getstate__()
        for key in ['traits_view']:
            if state.has_key(key):
                del state[key]

        return state

    @cached_property
    def _get_effective_color(self):
        alpha = self.color_[-1] if len(self.color_) == 4 else 1
        c = self.color_[:3] + (alpha * self.alpha,)
        return c

def _closest_point(target, p1, p2):
    '''Utility function for hittest:
    finds the point on the line between p1 and p2 to
    the target. Returns the 't' value of that point
    where the line is parametrized as
        t -> p1*(1-t) + p2*t
    Notably, if t=0 is p1, t=2 is p2 and anything outside
    that range is a point outisde p1, p2 on the line
    Note: can divide by zero, so user should check for that'''
    t = ((p1[0] - target[0])*(p1[0]-p2[0]) \
            + (p1[1] - target[1])*(p1[1]-p2[1]))\
        / ((p1[0] - p2[0])*(p1[0] - p2[0]) + (p1[1] - p2[1])*(p1[1] - p2[1]))
    return t

def _t_to_point(t, p1, p2):
    '''utility function for hittest for use with _closest_point
    returns the point corresponding to the parameter t
    on the line going between p1 and p2'''
    return ( p1[0]*(1-t) + p2[0]*t,
             p1[1]*(1-t) + p2[1]*t )


# EOF