/usr/share/pyshared/cogent/align/pairwise.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | #!/usr/bin/env python
"""Align two Alignables, each of which can be a sequence or a subalignment
produced by the same code."""
# How many cells before using linear space alignment algorithm.
# Should probably set to about half of physical memory / PointerEncoder.bytes
HIRSCHBERG_LIMIT = 10**8
import numpy
# setting global state on module load is bad practice and can be ineffective,
# and this setting matches the defaults anyway, but left here as reference
# in case it needs to be put back in a more runtime way.
#numpy.seterr(all='ignore')
import warnings
from cogent.align.traceback import alignment_traceback
from cogent.evolve.likelihood_tree import LikelihoodTreeEdge
from indel_positions import leaf2pog
from cogent import LoadSeqs
from cogent.core.alignment import Aligned
from cogent.align.traceback import map_traceback
from cogent.util import parallel
from cogent.util.modules import importVersionedModule, ExpectedImportError
try:
pyrex_align_module = importVersionedModule('_pairwise_pogs', globals(),
(3, 1), "slow Python alignment implementation")
except ExpectedImportError:
pyrex_align_module = None
try:
pyrex_seq_align_module = importVersionedModule('_pairwise_seqs', globals(),
(3, 1), "slow Python alignment implementation")
except ExpectedImportError:
pyrex_seq_align_module = None
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
class PointerEncoding(object):
"""Pack very small ints into a byte. The last field, state, is assigned
whatever bits are left over after the x and y pointers have claimed what
they need, which is expected to be only 2 bits each at most"""
dtype = numpy.int8
bytes = 1
def __init__(self, x, y):
assert x > 0 and y > 0, (x,y)
(x, y) = (numpy.ceil(numpy.log2([x+1,y+1]))).astype(int)
s = 8 * self.bytes - sum([x, y])
assert s**2 >= 4+1, (x,y,s) # min states required
self.widths = numpy.array([x,y,s]).astype(int)
self.limits = 2 ** self.widths
self.max_states = self.limits[-1]
if DEBUG:
print self.max_states, "states allowed in viterbi traceback"
self.positions = numpy.array([0, x, x+y], int)
#a.flags.writeable = False
def encode(self, x, y, s):
parts = numpy.asarray([x, y, s], int)
assert all(parts < self.limits), (parts, self.limits)
return (parts << self.positions).sum()
def decode(self, coded):
return (coded >> self.positions) % self.limits
def getEmptyArray(self, shape):
return numpy.zeros(shape, self.dtype)
DEBUG = False
def py_calc_rows(plan, x_index, y_index, i_low, i_high, j_low, j_high,
preds, state_directions, T,
xgap_scores, ygap_scores, match_scores, rows, track, track_enc,
viterbi, local=False, use_scaling=False, use_logs=False):
"""Pure python version of the dynamic programming algorithms
Forward and Viterbi. Works on sequences and POGs. Unli"""
if use_scaling:
warnings.warn("Pure python version of DP code can suffer underflows")
# because it ignores 'exponents', the Pyrex version doesn't.
source_states = range(len(T))
BEGIN = 0
ERROR = len(T)
(rows, exponents) = rows
if use_logs:
neutral_score = 0.0
impossible = -numpy.inf
else:
neutral_score = 1.0
impossible = 0.0
best_score = impossible
for i in range(i_low, i_high):
x = x_index[i]
i_sources = preds[0][i]
current_row = rows[plan[i]]
#current_row[:] = 0.0
current_row[:,0] = impossible
if i == 0 and not local:
current_row[0,0] = neutral_score
for j in range(j_low, j_high):
y = y_index[j]
j_sources = preds[1][j]
for (state, bin, dx, dy) in state_directions:
if (local and dx and dy):
cumulative_score = T[BEGIN, state]
pointer = (dx, dy, BEGIN)
else:
cumulative_score = impossible
pointer = (0, 0, ERROR)
for (a, prev_i) in enumerate([[i], i_sources][dx]):
source_row = rows[plan[prev_i]]
for (b, prev_j) in enumerate([[j], j_sources][dy]):
source_posn = source_row[prev_j]
for prev_state in source_states:
prev_value = source_posn[prev_state]
transition = T[prev_state, state]
if viterbi:
if use_logs:
candidate = prev_value + transition
else:
candidate = prev_value * transition
#if DEBUG:
# print prev_state, prev_value, state
if candidate > cumulative_score:
cumulative_score = candidate
pointer = (a+dx, b+dy, prev_state)
else:
cumulative_score += prev_value * transition
if dx and dy:
d_score = match_scores[bin, x, y]
elif dx:
d_score = xgap_scores[bin, x]
elif dy:
d_score = ygap_scores[bin, y]
else:
d_score = neutral_score
#if DEBUG:
# print (dx, dy), d_score, cumulative_score
if use_logs:
current_row[j, state] = cumulative_score + d_score
else:
current_row[j, state] = cumulative_score * d_score
if track is not None:
track[i,j,state] = (numpy.array(pointer) << track_enc).sum()
if (i==i_high-1 and j==j_high-1 and not local) or (
local and dx and dy and current_row[j, state] > best_score):
(best, best_score) = (((i, j), state), current_row[j, state])
#if DEBUG:
# print i_low, i_high, j_low, j_high
# print 'best_score %5.1f at %s' % (numpy.log(best_score), best)
if not use_logs:
best_score = numpy.log(best_score)
return best + (best_score,)
class TrackBack(object):
def __init__(self, tlist):
self.tlist = tlist
def __str__(self):
return ''.join('(%s,%s)%s' %
(x,y, '.xym'[dx+2*dy]) for (state, (x,y), (dx,dy))
in self.tlist)
def offset(self, X, Y):
tlist = [(state, (x+X, y+Y), dxy) for (state, (x,y), dxy) in self.tlist]
return TrackBack(tlist)
def __add__(self, other):
return TrackBack(self.tlist + other.tlist)
#def asStatePosnTransTuples(self):
# return iter(self.tlist)
def asStatePosnTuples(self):
return [(s,p) for (s,p,d) in self.tlist]
def asBinPosTuples(self, state_directions):
bin_map = dict((state, bin) for (state, bin, dx, dy) in
state_directions)
result = []
for (state, posn, (dx, dy)) in self.tlist:
pos = [[None, i-1][d] for (i,d) in zip(
posn, [dx, dy])]
result.append((bin_map.get(int(state), None), pos))
return result
class Pair(object):
def __init__(self, alignable1, alignable2, backward=False):
alignables = [alignable1, alignable2]
assert alignable1.alphabet == alignable2.alphabet
self.alphabet = alignable1.alphabet
for alignable in alignables:
assert isinstance(alignable, _Alignable), type(alignable)
if not isinstance(alignable, AlignableSeq):
some_pogs = True
break
else:
some_pogs = False
if some_pogs and pyrex_align_module is not None:
aligner = pyrex_align_module.calc_rows
elif (not some_pogs) and pyrex_seq_align_module is not None:
aligner = pyrex_seq_align_module.calc_rows
else:
aligner = py_calc_rows
self.both_seqs = not some_pogs
self.aligner = aligner
if backward:
alignables = [a.backward() for a in alignables]
self.children = [alignable1, alignable2] = alignables
self.max_preds = [alignable.max_preds for alignable in alignables]
self.pointer_encoding = PointerEncoding(*self.max_preds)
self.size = [len(alignable1), len(alignable2)]
self.uniq_size = [len(alignable1.plh), len(alignable2.plh)]
self.plan = numpy.array(alignable1.getRowAssignmentPlan())
self.x_index = alignable1.index
self.y_index = alignable2.index
def getSeqNamePairs(self):
return [(a.leaf.edge_name, a.leaf.sequence) for a in self.children]
def makeSimpleEmissionProbs(self, mprobs, psubs1):
psubs2 = [numpy.identity(len(psub)) for psub in psubs1]
bins = [PairBinData(mprobs, *ppsubs) for ppsubs in zip(
psubs1, psubs2) ]
return PairEmissionProbs(self, bins)
def makeEmissionProbs(self, bins):
bins = [PairBinData(*args) for args in bins]
return PairEmissionProbs(self, bins)
def makeReversibleEmissionProbs(self, bins, length):
bins = [BinData(*bin) for bin in bins]
return ReversiblePairEmissionProbs(self, bins, length)
def backward(self):
return Pair(*self.children, **dict(backward=True))
def __getitem__(self, index):
assert len(index) == 2, index
children = [child[dim_index] for (child, dim_index) in zip(
self.children, index)]
return Pair(*children)
def _decode_state(self, track, encoding, posn, pstate):
coded = int(track[posn[0], posn[1], pstate])
(a, b, state) = encoding.decode(coded)
if state >= track.shape[-1]:
raise ArithmeticError('Error state in traceback')
(x, y) = posn
if state == -1:
next = (x, y)
else:
if a: x = self.children[0][x][a-1]
if b: y = self.children[1][y][b-1]
next = numpy.array([x,y], int)
return (next, (a, b), state)
def traceback(self, track, encoding, posn, state, skip_last=False):
result = []
started = False
while 1:
(nposn, (a, b), nstate) = self._decode_state(track, encoding,
posn, state)
if state:
result.append((state, posn, (a>0, b>0)))
if started and state == 0:
break
(posn, state) = (nposn, nstate)
started = True
result.reverse()
if skip_last:
result.pop()
return TrackBack(result)
def edge2plh(self, edge, plhs):
bins = plhs[0].shape[0]
plh = [edge.sumInputLikelihoods(*[p[bin][1:-1] for p in plhs])
for bin in range(bins)]
return plh
def getPOG(self, aligned_positions):
(pog1, pog2) = [child.getPOG() for child in self.children]
return pog1.traceback(pog2, aligned_positions)
def getPointerEncoding(self, n_states):
assert n_states <= self.pointer_encoding.max_states, (
n_states, self.pointer_encoding.max_states)
return self.pointer_encoding
def getScoreArraysShape(self):
needed = max(self.plan) + 1
N = self.size[1]
return (needed, N)
def getEmptyScoreArrays(self, n_states, dp_options):
shape = self.getScoreArraysShape() + (n_states,)
mantissas = numpy.zeros(shape, float)
if dp_options.use_logs:
mantissas[:] = numpy.log(0.0)
if dp_options.use_scaling:
exponents = numpy.ones(shape, int) * -10000
else:
exponents = None
return (mantissas, exponents)
def calcRows(self, i_low, i_high, j_low, j_high, state_directions,
T, scores, rows, track, track_encoding, viterbi, **kw):
(match_scores, (xscores, yscores)) = scores
track_enc = track_encoding and track_encoding.positions
#print T
return self.aligner(self.plan, self.x_index, self.y_index,
i_low, i_high, j_low, j_high, self.children, state_directions,
T, xscores, yscores, match_scores, rows, track,
track_enc, viterbi, **kw)
class _Alignable(object):
def __init__(self, leaf):
self.leaf = leaf
self.alphabet = leaf.alphabet
(uniq, alphabet_size) = leaf.input_likelihoods.shape
full = len(leaf.index)
self.plh = numpy.zeros([uniq+2, alphabet_size], float)
self.plh[1:-1] = leaf.input_likelihoods
self.index = numpy.zeros([full+2], int)
self.index[1:-1] = numpy.asarray(leaf.index) + 1
self.index[0] = 0
self.index[full+1] = uniq+1
def _asCombinedArray(self):
# POG in a format suitable for Pyrex code, two arrays
# preds here means predecessor
pred = []
offsets = []
for pre in self:
offsets.append(len(pred))
pred.extend(pre)
offsets.append(len(pred))
# provides the paths leading to a point (predecessors), and offsets
# records index positions fdor each point (graph node)
return (numpy.array(pred), numpy.array(offsets))
def asCombinedArray(self):
if not hasattr(self, '_combined'):
self._combined = self._asCombinedArray()
return self._combined
def getRowAssignmentPlan(self):
d = self.getOuterLoopDiscardPoints()
free = set()
top = 0
assignments = []
for i in range(len(d)):
if free:
assignments.append(free.pop())
else:
assignments.append(top)
top = top + 1
for j in d[i]:
free.add(assignments[j])
return assignments
class AlignablePOG(_Alignable):
"""Alignable wrapper of a Partial Object Graph, ie: subalignment"""
def __init__(self, leaf, pog, children=None):
assert len(leaf) == len(pog), (len(leaf), len(pog))
_Alignable.__init__(self, leaf)
self.pred = pog.asListOfPredLists()
self.max_preds = max(len(pre) for pre in self.pred)
self.pog = pog
if children is not None:
self.aligneds = self._calcAligneds(children)
self.leaf = leaf
def __repr__(self):
return 'AlPOG(%s,%s)' % (self.pog.all_jumps, repr(self.leaf))
def getAlignment(self):
return LoadSeqs(data=self.aligneds)
def _calcAligneds(self, children):
word_length = self.alphabet.getMotifLen()
(starts, ends, maps) = map_traceback(self.pog.getFullAlignedPositions())
aligneds = []
for (dim, child) in enumerate(children):
for (seq_name, aligned) in child.aligneds:
#aligned = aligned[(starts[dim]-1)*word_length:(ends[dim]-1)*word_length]
aligned = aligned.remappedTo((maps[dim]*word_length).inverse())
aligneds.append((seq_name, aligned))
return aligneds
def backward(self):
return self.__class__(self.leaf.backward(), self.pog.backward())
def getPOG(self):
return self.pog
def __len__(self):
return len(self.pred)
def __iter__(self):
return iter(self.pred)
def __getitem__(self, index):
# XXX the int case should be a different method?
if isinstance(index, int):
return self.pred[index]
else:
pog = self.pog[index]
leaf = self.leaf[index]
return AlignablePOG(leaf, pog)
def midlinks(self):
return self.pog.midlinks()
def getOuterLoopDiscardPoints(self):
# for score row caching
last_successor = {}
discard_list = {}
for (successor, ps) in enumerate(self):
for i in ps:
last_successor[i] = successor
discard_list[successor] = []
for (i, successor) in last_successor.items():
discard_list[successor].append(i)
return discard_list
class AlignableSeq(_Alignable):
"""Wrapper for a Sequence which gives it the same interface as an
AlignablePOG"""
def __init__(self, leaf):
_Alignable.__init__(self, leaf)
if hasattr(leaf, 'sequence'):
self.seq = leaf.sequence
aligned = Aligned([(0, len(self.seq))], self.seq, len(self.seq))
self.aligneds = [(self.leaf.edge_name, aligned)]
self.max_preds = 1
self._pog = None
def __repr__(self):
return 'AlSeq(%s)' % (getattr(self, 'seq', '?'))
def getPOG(self):
if self._pog is None:
self._pog = leaf2pog(self.leaf)
return self._pog
def __len__(self):
return len(self.index)
def backward(self):
return self.__class__(self.leaf.backward())
def __iter__(self):
# empty list 1st since 0th position has no predecessor
yield []
for i in range(1, len(self.index)):
yield [i-1]
def __getitem__(self, index):
# XXX the int case should be a different method?
if isinstance(index, int):
if index == 0:
return []
elif 0 < index < len(self.index):
return [index-1]
else:
raise IndexError(index)
#elif index == slice(None, None, None):
# return self
else:
return AlignableSeq(self.leaf[index])
def midlinks(self):
half = len(self.leaf) // 2
return [(half, half)]
def getOuterLoopDiscardPoints(self):
return [[]] + [[i] for i in range(len(self)-1)]
def adaptPairTM(pairTM, finite=False):
# constructs state_directions
if finite:
# BEGIN and END already specified
assert list(pairTM.Tags[0]) == list(pairTM.Tags[-1]) == []
T = pairTM.Matrix
assert not T[-1, ...] and not T[..., 0]
for tag in pairTM.Tags[1:-1]:
assert tag, 'silent state'
state_directions_list = list(enumerate(pairTM.Tags[1:-1]))
else:
pairTM = pairTM.withoutSilentStates()
stationary_probs = numpy.array(pairTM.StationaryProbs)
T = pairTM.Matrix
full_matrix = numpy.zeros([len(T)+2, len(T)+2], float)
full_matrix[1:-1,1:-1] = T
full_matrix[0,1:-1] = stationary_probs # from BEGIN
full_matrix[:,-1] = 1.0 # to END
T = full_matrix
state_directions_list = list(enumerate(pairTM.Tags))
this_row_last = lambda (state, (dx,dy)):(not (dx or dy), not dx)
state_directions_list.sort(key=this_row_last)
# sorting into desirable order (sort may not be necessary)
state_directions = numpy.zeros([len(state_directions_list), 4], int)
for (i, (state, emit)) in enumerate(state_directions_list):
(dx, dy) = emit
assert dx==0 or dy==0 or dx==dy
bin = max(dx, dy)-1
state_directions[i] = (state+1, bin, dx>0, dy>0)
return (state_directions, T)
class PairEmissionProbs(object):
"""A pair of sequences and the psubs that relate them, but no gap TM"""
def __init__(self, pair, bins):
self.pair = pair
self.bins = bins
self.scores = {}
def makePartialLikelihoods(self, use_cost_function):
# use_cost_function specifies whether eqn 2 of Loytynoja & Goldman
# is applied. Without it insertions may be favored over deletions
# because the emission probs of the insert aren't counted.
plhs = [[], []]
gap_plhs = [[], []]
for bin in self.bins:
for (dim, pred) in enumerate(self.pair.children):
# first and last should be special START and END nodes
plh = numpy.inner(pred.plh, bin.ppsubs[dim])
gap_plh = numpy.inner(pred.plh, bin.mprobs)
if use_cost_function:
plh /= gap_plh[..., numpy.newaxis]
gap_plh[:] = 1.0
else:
gap_plh[0] = gap_plh[-1] = 1.0
gap_plhs[dim].append(gap_plh)
plhs[dim].append(plh)
for dim in [0,1]:
plhs[dim] = numpy.array(plhs[dim])
gap_plhs[dim] = numpy.array(gap_plhs[dim])
return (plhs, gap_plhs)
def _makeEmissionProbs(self, use_cost_function):
(plhs, gap_scores) = self.makePartialLikelihoods(use_cost_function)
match_scores = numpy.zeros([len(self.bins)] + self.pair.uniq_size,
float)
for (b, (x, y, bin)) in enumerate(zip(plhs[0], plhs[1], self.bins)):
match_scores[b] = numpy.inner(x*bin.mprobs, y)
match_scores[:, 0, 0] = match_scores[:, -1, -1] = 1.0
return (match_scores, gap_scores)
def _getEmissionProbs(self, use_logs, use_cost_function):
key = (use_logs, use_cost_function)
if key not in self.scores:
if use_logs:
(M, (X, Y)) = self._getEmissionProbs(False, use_cost_function)
(M, X, Y) = [numpy.log(a) for a in [M, X, Y]]
self.scores[key] = (M, (X, Y))
else:
self.scores[key] = self._makeEmissionProbs(use_cost_function)
return self.scores[key]
def _calc_global_probs(self, pair, scores, kw, state_directions,
T, rows, cells, backward=False):
if kw['use_logs']:
(impossible, inevitable) = (-numpy.inf, 0.0)
else:
(impossible, inevitable) = (0.0, 1.0)
(M, N) = pair.size
(mantissas, exponents) = rows
mantissas[0,0,0] = inevitable
if exponents is not None:
exponents[0,0,0] = 0
probs = []
last_i = -1
to_end = numpy.array([(len(T)-1, 0, 0, 0)])
for (state, (i,j)) in cells:
if i > last_i:
rr = pair.calcRows(last_i+1, i+1, 0, N-1,
state_directions, T, scores, rows, None, None, **kw)
else:
assert i == last_i, (i, last_i)
last_i = i
T2 = T.copy()
if backward:
T2[:, -1] = T[:, state]
else:
T2[:, -1] = impossible
T2[state, -1] = inevitable
global DEBUG
_d = DEBUG
DEBUG = False
(maxpos, state, score) = pair.calcRows(
i, i+1, j, j+1, to_end, T2, scores, rows, None, None, **kw)
DEBUG = _d
probs.append(score)
return numpy.array(probs)
def __getitem__(self, index):
assert len(index) == 2, index
return PairEmissionProbs(self.pair[index], self.bins)
def hirschberg(self, TM, dp_options):
"""linear-space alignment algorithm
A linear space algorithm for computing maximal common subsequences.
Comm. ACM 18,6 (1975) 341-343.
Dan Hirschberg
"""
(states, T) = TM
# This implementation is slightly complicated by the need to handle
# alignments of alignments, because a subalignment may have an indel
# spanning the midpoint where we want to divide the problem in half.
# That must be the sense in which the fatter and slower method used
# in "Prank" (Loytynoja A, Goldman N. 2005) is "computationally more
# attractive": for them there is only one link in the list:
links = self.pair.children[0].midlinks()
def _half_row_scores(backward):
T2 = T.copy()
if backward:
T2[0, 1:-1] = 1.0 # don't count the begin state transition twice
else:
T2[1:-1:,-1] = 1.0 # don't count the end state transition twice
return self.scores_at_rows(
(states, T2), dp_options,
last_row=[link[backward] for link in links],
backward = not not backward)
(last_row1, last_row2) = parallel.map(_half_row_scores, [0,1])
middle_row = (last_row1 + last_row2)
(link, anchor, anchor_state) = numpy.unravel_index(
numpy.argmax(middle_row.flat), middle_row.shape)
score = middle_row[link, anchor, anchor_state]
(join1, join2) = links[link]
def _half_solution(part):
T2 = T.copy()
if part == 0:
T2[-1] = 0.0
T2[anchor_state, -1] = 1.0 # Must end with the anchor's state
part = self[:join1, :anchor]
else:
T2[0, :] = T[anchor_state, :] # Starting from the anchor's state
part = self[join2:, anchor:]
return part.dp((states, T2), dp_options)
[(s1, tb_a), (s2, tb_b)] = parallel.map(_half_solution, [0,1])
tb = tb_a + tb_b.offset(join2, anchor)
# Same return as for self.dp(..., tb=...)
return score, tb
def scores_at_rows(self, TM, dp_options, last_row, backward=False):
"""A score array shaped [rows, columns, states] but only for those
row numbers requested. Used by Hirschberg algorithm"""
(M, N) = self.pair.size
(state_directions, T) = TM
reverse = bool(dp_options.backward) ^ bool(backward)
cells = []
p_rows = sorted(set(last_row))
if reverse:
p_rows.reverse()
for i in p_rows:
for j in range(0, N-1):
for state in range(len(T)-1):
if reverse:
cells.append((state, (M-2-i, N-2-j)))
else:
cells.append((state, (i, j)))
probs = self.dp(TM, dp_options, cells=cells, backward=backward)
probs = numpy.array(probs)
probs.shape = (len(p_rows), N-1, len(T)-1)
result = numpy.array([
probs[p_rows.index(i)] for i in last_row])
return result
def dp(self, TM, dp_options, cells=None, backward=False):
"""Score etc. from a Dynamic Programming function applied to this pair.
TM - (state_directions, array) describing the Transition Matrix.
dp_options - instance of DPFlags indicating algorithm etc.
cells - List of (state, posn) for which posterior probs are requested.
backward - run algorithm in reverse order.
"""
(state_directions, T) = TM
if dp_options.viterbi and cells is None:
encoder = self.pair.getPointerEncoding(len(T))
problem_dimensions = self.pair.size + [len(T)]
problem_size = numpy.product(problem_dimensions)
memory = problem_size * encoder.bytes / 10**6
if dp_options.local:
msg = 'Local alignment'
elif cells is not None:
msg = 'Posterior probs'
elif self.pair.size[0]-2 >= 3 and not backward and (
problem_size > HIRSCHBERG_LIMIT or
parallel.getCommunicator().Get_size() > 1):
return self.hirschberg(TM, dp_options)
else:
msg = 'dp'
if memory > 500:
warnings.warn('%s will use > %sMb.' % (msg, memory))
track = encoder.getEmptyArray(problem_dimensions)
else:
track = encoder = None
kw = dict(
use_scaling=dp_options.use_scaling,
use_logs=dp_options.use_logs,
viterbi=dp_options.viterbi,
local=dp_options.local)
if dp_options.backward:
backward = not backward
if backward:
pair = self.pair.backward()
origT = T
T = numpy.zeros(T.shape, float)
T[1:-1,1:-1] = numpy.transpose(origT[1:-1,1:-1])
T[0,:] = origT[:, -1]
T[:,-1] = origT[0,:]
else:
pair = self.pair
if dp_options.use_logs:
T = numpy.log(T)
scores = self._getEmissionProbs(
dp_options.use_logs, dp_options.use_cost_function)
rows = pair.getEmptyScoreArrays(len(T), dp_options)
if cells is not None:
assert not dp_options.local
result = self._calc_global_probs(
pair, scores, kw, state_directions, T, rows, cells,
backward)
else:
(M, N) = pair.size
if dp_options.local:
(maxpos, state, score) = pair.calcRows(1, M-1, 1, N-1,
state_directions, T, scores, rows, track, encoder, **kw)
else:
pair.calcRows(0, M-1, 0, N-1,
state_directions, T, scores, rows, track, encoder, **kw)
end_state_only = numpy.array([(len(T)-1, 0, 1, 1)])
(maxpos, state, score) = pair.calcRows(M-1, M, N-1, N,
end_state_only, T, scores, rows, track, encoder, **kw)
if track is None:
result = score
else:
tb = self.pair.traceback(track, encoder, maxpos, state,
skip_last = not dp_options.local)
result = (score, tb)
return result
def getAlignable(self, aligned_positions, ratio=None):
assert ratio is None, "already 2-branched"
children = self.pair.children # alignables
leaves = [c.leaf for c in children]
aligned_positions = [posn for (bin, posn) in aligned_positions]
pog = self.pair.getPOG(aligned_positions)
edge = LikelihoodTreeEdge(leaves, 'parent', pog.getAlignedPositions())
(plhs, gapscores) = self.makePartialLikelihoods(use_cost_function=False)
plh = self.pair.edge2plh(edge, plhs)
assert len(plh) == 1, ('bins!', len(plh))
leaf = edge.asLeaf(plh[0]) # like profile
return AlignablePOG(leaf, pog, children)
def makePairHMM(self, transition_matrix, finite=False):
# whether TM includes Begin and End states
return PairHMM(self, transition_matrix, finite=finite)
class BinData(object):
def __init__(self, mprobs, Qd, rate=1.0):
self.Qd = Qd
self.mprobs = mprobs
self.rate = rate
def forLengths(self, length1, length2):
psub1 = self.Qd(length1 * self.rate)
psub2 = self.Qd(length2 * self.rate)
return PairBinData(self.mprobs, psub1, psub2)
class PairBinData(object):
def __init__(self, mprobs, psub1, psub2):
self.mprobs = mprobs
self.ppsubs = [psub1, psub2]
class ReversiblePairEmissionProbs(object):
"""A pair of sequences and the psubs that relate them, but no gap TM
'Reversible' in the sense that how `length` is divided between the 2 edges
shouldn't change the forward and viterbi results"""
def __init__(self, pair, bins, length):
self.pair = pair
self.bins = bins
self.length = length
self.midpoint = self._makePairEmissionProbs(0.5)
def dp(self, *args, **kw):
return self.midpoint.dp(*args, **kw)
def _makePairEmissionProbs(self, ratio):
assert 0.0 <= ratio <= 1.0
lengths = [self.length * ratio, self.length * (1.0-ratio)]
pbins = [bin.forLengths(*lengths) for bin in self.bins]
return PairEmissionProbs(self.pair, pbins)
def getAlignable(self, a_p, ratio=None):
# a_p alignment positions
if ratio in [None, 0.5]:
ep = self.midpoint
else:
ep = self._makePairEmissionProbs(ratio=ratio)
return ep.getAlignable(a_p)
def makePairHMM(self, transition_matrix):
return PairHMM(self, transition_matrix)
class DPFlags(object):
def __init__(self, viterbi, local=False, use_logs=None,
use_cost_function=True, use_scaling=None, backward=False):
if use_logs is None:
use_logs = viterbi and not use_scaling
if use_scaling is None:
use_scaling = not use_logs
if use_logs:
assert viterbi and not use_scaling
self.use_cost_function = use_cost_function
self.local = local
self.use_logs = use_logs
self.use_scaling = use_scaling
self.viterbi = viterbi
self.backward = backward
self.as_tuple = (local, use_logs, use_cost_function, use_scaling,
viterbi, backward)
def __hash__(self):
return hash(self.as_tuple)
def __eq__(self, other):
return self.as_tuple == other.as_tuple
class PairHMM(object):
def __init__(self, emission_probs, transition_matrix, finite=False):
self.emission_probs = emission_probs
self.transition_matrix = transition_matrix
self._transition_matrix = adaptPairTM(transition_matrix,
finite=finite)
self.results = {}
def _getDPResult(self, **kw):
dp_options = DPFlags(**kw)
if dp_options not in self.results:
self.results[dp_options] = \
self.emission_probs.dp(self._transition_matrix, dp_options)
return self.results[dp_options]
def getForwardScore(self, **kw):
return self._getDPResult(viterbi=False, **kw)
def _getPosteriorProbs(self, tb, **kw):
cells = tb.asStatePosTuples()
score = self.getForwardScore(**kw)
dp_options = DPFlags(viterbi=False, **kw)
fwd = self.emission_probs.dp(self._transition_matrix, dp_options, cells)
(N, M) = self.emission_probs.pair.size
cells = [(state, (N-x-2, M-y-2)) for (state, (x,y)) in cells]
tb.reverse()
bck = self.emission_probs.dp(self._transition_matrix, dp_options, cells,
backward=True)[::-1]
return fwd + bck - score
def getViterbiPath(self, **kw):
result = self._getDPResult(viterbi=True,**kw)
return ViterbiPath(self, result, **kw)
def getViterbiScoreAndAlignment(self, ratio=None, **kw):
# deprecate
vpath = self.getViterbiPath(**kw)
return (vpath.getScore(), vpath.getAlignment(ratio=ratio))
def getLocalViterbiScoreAndAlignment(self, posterior_probs=False, **kw):
# Only for pairwise. Merge with getViterbiScoreAndAlignable above.
# Local and POGs doesn't mix well.
(vscore, tb) = self._getDPResult(viterbi=True, local=True, **kw)
(state_directions, T) = self._transition_matrix
aligned_positions = tb.asBinPosTuples(state_directions)
seqs = self.emission_probs.pair.getSeqNamePairs()
aligned_positions = [posn for (bin, posn) in aligned_positions]
word_length = self.emission_probs.pair.alphabet.getMotifLen()
align = alignment_traceback(seqs, aligned_positions, word_length)
if posterior_probs:
pp = self._getPosteriorProbs(tb, use_cost_function=False)
return (vscore, align, numpy.exp(pp))
else:
return (vscore, align)
class ViterbiPath(object):
def __init__(self, pair_hmm, result, **kw):
(self.vscore, self.tb) = result
(state_directions, T) = pair_hmm._transition_matrix
self.aligned_positions = self.tb.asBinPosTuples(state_directions)
self.pair_hmm = pair_hmm
self.kw = kw
def getScore(self):
return self.vscore
def getAlignable(self, ratio=None):
# Because the alignment depends on the total length (so long as the
# model is reversable!) the same cached viterbi result can be re-used
# to calculate the partial likelihoods even if the root of the 2-seq
# tree is moved around.
alignable = self.pair_hmm.emission_probs.getAlignable(
self.aligned_positions, ratio=ratio)
return alignable
def getAlignment(self, **kw):
alignable = self.getAlignable(**kw)
return alignable.getAlignment()
def getPosteriorProbs(self):
pp = self.pair_hmm._getPosteriorProbs(self.tb, use_cost_function=True)
return numpy.exp(pp)
|