This file is indexed.

/usr/share/pyshared/cogent/align/pairwise.py is in python-cogent 1.5.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
#!/usr/bin/env python

"""Align two Alignables, each of which can be a sequence or a subalignment
produced by the same code."""

# How many cells before using linear space alignment algorithm.
# Should probably set to about half of physical memory / PointerEncoder.bytes
HIRSCHBERG_LIMIT = 10**8

import numpy

# setting global state on module load is bad practice and can be ineffective,
# and this setting matches the defaults anyway, but left here as reference 
# in case it needs to be put back in a more runtime way.
#numpy.seterr(all='ignore')

import warnings

from cogent.align.traceback import alignment_traceback
from cogent.evolve.likelihood_tree import LikelihoodTreeEdge
from indel_positions import leaf2pog
from cogent import LoadSeqs
from cogent.core.alignment import Aligned
from cogent.align.traceback import map_traceback
from cogent.util import parallel

from cogent.util.modules import importVersionedModule, ExpectedImportError
try:
    pyrex_align_module = importVersionedModule('_pairwise_pogs', globals(),
            (3, 1), "slow Python alignment implementation")
except ExpectedImportError:
    pyrex_align_module = None
try:
    pyrex_seq_align_module = importVersionedModule('_pairwise_seqs', globals(),
            (3, 1), "slow Python alignment implementation")
except ExpectedImportError:
    pyrex_seq_align_module = None

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"

class PointerEncoding(object):
    """Pack very small ints into a byte.  The last field, state, is assigned
    whatever bits are left over after the x and y pointers have claimed what 
    they need, which is expected to be only 2 bits each at most"""
    
    dtype = numpy.int8
    bytes = 1

    def __init__(self, x, y):
        assert x > 0 and y > 0, (x,y)
        (x, y) = (numpy.ceil(numpy.log2([x+1,y+1]))).astype(int)
        s = 8 * self.bytes - sum([x, y])
        assert s**2 >= 4+1, (x,y,s) # min states required
        self.widths = numpy.array([x,y,s]).astype(int)
        self.limits = 2 ** self.widths
        self.max_states = self.limits[-1]
        if DEBUG:
            print self.max_states, "states allowed in viterbi traceback"
        self.positions = numpy.array([0, x, x+y], int)
        #a.flags.writeable = False
    def encode(self, x, y, s):
        parts = numpy.asarray([x, y, s], int)
        assert all(parts < self.limits), (parts, self.limits)
        return (parts << self.positions).sum()
    def decode(self, coded):
        return (coded >> self.positions) % self.limits
    def getEmptyArray(self, shape):
        return numpy.zeros(shape, self.dtype)
    
DEBUG = False

def py_calc_rows(plan, x_index, y_index, i_low, i_high, j_low, j_high,
        preds, state_directions, T,
        xgap_scores, ygap_scores, match_scores, rows, track, track_enc, 
        viterbi, local=False, use_scaling=False, use_logs=False):
    """Pure python version of the dynamic programming algorithms
    Forward and Viterbi.  Works on sequences and POGs.  Unli"""
    if use_scaling:
        warnings.warn("Pure python version of DP code can suffer underflows")
        # because it ignores 'exponents', the Pyrex version doesn't.
    source_states = range(len(T))
    BEGIN = 0
    ERROR = len(T)
    (rows, exponents) = rows
    if use_logs:
        neutral_score = 0.0
        impossible = -numpy.inf
    else:
        neutral_score = 1.0
        impossible = 0.0
    best_score = impossible
    for i in range(i_low, i_high):
        x = x_index[i]
        i_sources = preds[0][i]
        current_row = rows[plan[i]]
        #current_row[:] = 0.0
        current_row[:,0] = impossible
        if i == 0 and not local:
            current_row[0,0] = neutral_score
        for j in range(j_low, j_high):
            y = y_index[j]
            j_sources = preds[1][j]
            for (state, bin, dx, dy) in state_directions:
                if (local and dx and dy):
                    cumulative_score = T[BEGIN, state]
                    pointer = (dx, dy, BEGIN)
                else:
                    cumulative_score = impossible
                    pointer = (0, 0, ERROR)
                for (a, prev_i) in enumerate([[i], i_sources][dx]):
                    source_row = rows[plan[prev_i]]
                    for (b, prev_j) in enumerate([[j], j_sources][dy]):
                        source_posn = source_row[prev_j]
                        for prev_state in source_states:
                            prev_value = source_posn[prev_state]
                            transition = T[prev_state, state]
                            if viterbi:
                                if use_logs:
                                    candidate = prev_value + transition
                                else:
                                    candidate = prev_value * transition
                                #if DEBUG:
                                #    print prev_state, prev_value, state
                                if candidate > cumulative_score:
                                    cumulative_score = candidate
                                    pointer = (a+dx, b+dy, prev_state)
                            else:
                                cumulative_score += prev_value * transition
                if dx and dy:
                    d_score = match_scores[bin, x, y]
                elif dx:
                    d_score = xgap_scores[bin, x]
                elif dy:
                    d_score = ygap_scores[bin, y]
                else:
                    d_score = neutral_score
                #if DEBUG:
                #    print (dx, dy), d_score, cumulative_score
                if use_logs:
                    current_row[j, state] = cumulative_score + d_score
                else:
                    current_row[j, state] = cumulative_score * d_score
                if track is not None:
                    track[i,j,state] = (numpy.array(pointer) << track_enc).sum()
                if (i==i_high-1 and j==j_high-1 and not local) or (
                        local and dx and dy and current_row[j, state] > best_score):
                    (best, best_score) = (((i, j), state), current_row[j, state])
    #if DEBUG:
    #    print i_low, i_high, j_low, j_high
    #    print 'best_score %5.1f  at  %s' % (numpy.log(best_score), best)
    if not use_logs:
        best_score = numpy.log(best_score)
    return best + (best_score,)

class TrackBack(object):
    def __init__(self, tlist):
        self.tlist = tlist
    
    def __str__(self):
        return ''.join('(%s,%s)%s' % 
            (x,y, '.xym'[dx+2*dy]) for (state, (x,y), (dx,dy))
            in self.tlist)
            
    def offset(self, X, Y):
        tlist = [(state, (x+X, y+Y), dxy) for (state, (x,y), dxy) in self.tlist]
        return TrackBack(tlist)
                
    def __add__(self, other):
        return TrackBack(self.tlist + other.tlist)
        
    #def asStatePosnTransTuples(self):
    #    return iter(self.tlist)
        
    def asStatePosnTuples(self):
        return [(s,p) for (s,p,d) in self.tlist]

    def asBinPosTuples(self, state_directions):
        bin_map = dict((state, bin) for (state, bin, dx, dy) in
            state_directions)
        result = []
        for (state, posn, (dx, dy)) in self.tlist:
            pos = [[None, i-1][d] for (i,d) in zip(
                    posn, [dx, dy])]
            result.append((bin_map.get(int(state), None), pos))
        return result
    

class Pair(object):
    def __init__(self, alignable1, alignable2, backward=False):
        alignables = [alignable1, alignable2]
        assert alignable1.alphabet == alignable2.alphabet
        self.alphabet = alignable1.alphabet
        
        for alignable in alignables:
            assert isinstance(alignable, _Alignable), type(alignable)
            if not isinstance(alignable, AlignableSeq):
                some_pogs = True
                break
        else:
            some_pogs = False
        
        if some_pogs and pyrex_align_module is not None:
            aligner = pyrex_align_module.calc_rows
        elif (not some_pogs) and pyrex_seq_align_module is not None:
            aligner =  pyrex_seq_align_module.calc_rows
        else:
            aligner = py_calc_rows
        
        self.both_seqs = not some_pogs
        self.aligner = aligner
        
        if backward:
            alignables = [a.backward() for a in alignables]
        
        self.children = [alignable1, alignable2] = alignables
        self.max_preds = [alignable.max_preds for alignable in alignables]
        self.pointer_encoding = PointerEncoding(*self.max_preds)

        self.size = [len(alignable1), len(alignable2)]
        self.uniq_size = [len(alignable1.plh), len(alignable2.plh)]
        self.plan = numpy.array(alignable1.getRowAssignmentPlan())
        self.x_index = alignable1.index
        self.y_index = alignable2.index
    
    def getSeqNamePairs(self):
        return [(a.leaf.edge_name, a.leaf.sequence) for a in self.children]
    
    def makeSimpleEmissionProbs(self, mprobs, psubs1):
        psubs2 = [numpy.identity(len(psub)) for psub in psubs1]
        bins = [PairBinData(mprobs, *ppsubs) for ppsubs in zip(
            psubs1, psubs2) ]
        return PairEmissionProbs(self, bins)
    
    def makeEmissionProbs(self, bins):
        bins = [PairBinData(*args) for args in bins]
        return PairEmissionProbs(self, bins)
    
    def makeReversibleEmissionProbs(self, bins, length):
        bins = [BinData(*bin) for bin in bins]
        return ReversiblePairEmissionProbs(self, bins, length)
    
    def backward(self):
        return Pair(*self.children, **dict(backward=True))
    
    def __getitem__(self, index):
        assert len(index) == 2, index
        children = [child[dim_index] for (child, dim_index) in zip(
                self.children, index)]
        return Pair(*children)
        
    def _decode_state(self, track, encoding, posn, pstate):
        coded = int(track[posn[0], posn[1], pstate])
        (a, b, state) = encoding.decode(coded)
        if state >= track.shape[-1]:
            raise ArithmeticError('Error state in traceback')
        (x, y) = posn
        if state == -1:
            next = (x, y)
        else:
            if a: x = self.children[0][x][a-1]
            if b: y = self.children[1][y][b-1]
            next = numpy.array([x,y], int)
        return (next, (a, b), state)
    
    def traceback(self, track, encoding, posn, state, skip_last=False):
        result = []
        started = False
        while 1:
            (nposn, (a, b), nstate) = self._decode_state(track, encoding, 
                    posn, state)
            if state:
                result.append((state, posn, (a>0, b>0)))
            if started and state == 0:
                break
            (posn, state) = (nposn, nstate)
            started = True
        result.reverse()
        if skip_last:
            result.pop()
        return TrackBack(result)
    
    def edge2plh(self, edge, plhs):
        bins = plhs[0].shape[0]
        plh = [edge.sumInputLikelihoods(*[p[bin][1:-1] for p in plhs])
                for bin in range(bins)]
        return plh
    
    def getPOG(self, aligned_positions):
        (pog1, pog2) = [child.getPOG() for child in self.children]
        return pog1.traceback(pog2, aligned_positions)
        
    def getPointerEncoding(self, n_states):
        assert n_states <= self.pointer_encoding.max_states, (
            n_states, self.pointer_encoding.max_states)
        return self.pointer_encoding

    def getScoreArraysShape(self):
        needed = max(self.plan) + 1
        N = self.size[1]
        return (needed, N)
    
    def getEmptyScoreArrays(self, n_states, dp_options):
        shape = self.getScoreArraysShape() + (n_states,)
        mantissas = numpy.zeros(shape, float)
        if dp_options.use_logs:
            mantissas[:] = numpy.log(0.0)
        if dp_options.use_scaling:
            exponents = numpy.ones(shape, int) * -10000
        else:
            exponents = None
        return (mantissas, exponents)
    
    def calcRows(self, i_low, i_high, j_low, j_high, state_directions,
            T, scores, rows, track, track_encoding, viterbi, **kw):
        (match_scores, (xscores, yscores)) = scores
        track_enc = track_encoding and track_encoding.positions
        #print T
        return self.aligner(self.plan, self.x_index, self.y_index,
                i_low, i_high, j_low, j_high, self.children, state_directions,
                T, xscores, yscores, match_scores, rows, track, 
                track_enc, viterbi, **kw)
    

class _Alignable(object):
    def __init__(self, leaf):
        self.leaf = leaf
        self.alphabet = leaf.alphabet
        (uniq, alphabet_size) = leaf.input_likelihoods.shape
        full = len(leaf.index)
        self.plh = numpy.zeros([uniq+2, alphabet_size], float)
        self.plh[1:-1] = leaf.input_likelihoods
        self.index = numpy.zeros([full+2], int)
        self.index[1:-1] = numpy.asarray(leaf.index) + 1
        self.index[0] = 0
        self.index[full+1] = uniq+1
    
    def _asCombinedArray(self):
        # POG in a format suitable for Pyrex code, two arrays
        # preds here means predecessor
        pred = []
        offsets = []
        for pre in self:
            offsets.append(len(pred))
            pred.extend(pre)
        offsets.append(len(pred))
        # provides the paths leading to a point (predecessors), and offsets
        # records index positions fdor each point (graph node)
        return (numpy.array(pred), numpy.array(offsets))
    
    def asCombinedArray(self):
        if not hasattr(self, '_combined'):
            self._combined = self._asCombinedArray()
        return self._combined
    
    def getRowAssignmentPlan(self):
        d = self.getOuterLoopDiscardPoints()
        free = set()
        top = 0
        assignments = []
        for i in range(len(d)):
            if free:
                assignments.append(free.pop())
            else:
                assignments.append(top)
                top = top + 1
            for j in d[i]:
                free.add(assignments[j])
        
        return assignments
    

class AlignablePOG(_Alignable):
    """Alignable wrapper of a Partial Object Graph, ie: subalignment"""
    
    def __init__(self, leaf, pog, children=None):
        assert len(leaf) == len(pog), (len(leaf), len(pog))
        _Alignable.__init__(self, leaf)
        self.pred = pog.asListOfPredLists()
        self.max_preds = max(len(pre) for pre in self.pred)
        self.pog = pog
        if children is not None:
            self.aligneds = self._calcAligneds(children)
        self.leaf = leaf
    
    def __repr__(self):
        return 'AlPOG(%s,%s)' % (self.pog.all_jumps, repr(self.leaf))
    
    def getAlignment(self):
        return LoadSeqs(data=self.aligneds)
    
    def _calcAligneds(self, children):
        word_length = self.alphabet.getMotifLen()
        (starts, ends, maps) = map_traceback(self.pog.getFullAlignedPositions())
        aligneds = []
        for (dim, child) in enumerate(children):
            for (seq_name, aligned) in child.aligneds:
                #aligned = aligned[(starts[dim]-1)*word_length:(ends[dim]-1)*word_length]
                aligned = aligned.remappedTo((maps[dim]*word_length).inverse())
                aligneds.append((seq_name, aligned))
        return aligneds
    
    def backward(self):
        return self.__class__(self.leaf.backward(), self.pog.backward())
    
    def getPOG(self):
        return self.pog
    
    def __len__(self):
        return len(self.pred)
    
    def __iter__(self):
        return iter(self.pred)
    
    def __getitem__(self, index):
        # XXX the int case should be a different method?
        if isinstance(index, int):
            return self.pred[index]
        else:
            pog = self.pog[index]
            leaf = self.leaf[index]
            return AlignablePOG(leaf, pog)
    
    def midlinks(self):
        return self.pog.midlinks()
    
    def getOuterLoopDiscardPoints(self):
        # for score row caching
        last_successor = {}
        discard_list = {}
        for (successor, ps) in enumerate(self):
            for i in ps:
                last_successor[i] = successor
            discard_list[successor] = []
        for (i, successor) in last_successor.items():
            discard_list[successor].append(i)
        return discard_list
    

class AlignableSeq(_Alignable):
    """Wrapper for a Sequence which gives it the same interface as an
    AlignablePOG"""
    
    def __init__(self, leaf):
        _Alignable.__init__(self, leaf)
        if hasattr(leaf, 'sequence'):
            self.seq = leaf.sequence
            aligned = Aligned([(0, len(self.seq))], self.seq, len(self.seq))
            self.aligneds = [(self.leaf.edge_name, aligned)]
        self.max_preds = 1
        self._pog = None
    
    def __repr__(self):
        return 'AlSeq(%s)' % (getattr(self, 'seq', '?'))
    
    def getPOG(self):
        if self._pog is None:
            self._pog = leaf2pog(self.leaf)
        return self._pog
    
    def __len__(self):
        return len(self.index)
    
    def backward(self):
        return self.__class__(self.leaf.backward())
    
    def __iter__(self):
        # empty list 1st since 0th position has no predecessor
        yield []
        for i in range(1, len(self.index)):
            yield [i-1]
    
    def __getitem__(self, index):
        # XXX the int case should be a different method?
        if isinstance(index, int):
            if index == 0:
                return []
            elif 0 < index < len(self.index):
                return [index-1]
            else:
                raise IndexError(index)
        #elif index == slice(None, None, None):
        #    return self
        else:
            return AlignableSeq(self.leaf[index])

    def midlinks(self):
        half = len(self.leaf) // 2
        return  [(half, half)]

    def getOuterLoopDiscardPoints(self):
        return [[]] + [[i] for i in range(len(self)-1)]
    

def adaptPairTM(pairTM, finite=False):
    # constructs state_directions
    if finite:
        # BEGIN and END already specified
        assert list(pairTM.Tags[0]) == list(pairTM.Tags[-1]) == []
        T = pairTM.Matrix
        assert not T[-1, ...] and not T[..., 0]
        for tag in pairTM.Tags[1:-1]:
            assert tag, 'silent state'
        state_directions_list = list(enumerate(pairTM.Tags[1:-1]))
    else:
        pairTM = pairTM.withoutSilentStates()
        stationary_probs = numpy.array(pairTM.StationaryProbs)
        T = pairTM.Matrix
        full_matrix = numpy.zeros([len(T)+2, len(T)+2], float)
        full_matrix[1:-1,1:-1] = T
        full_matrix[0,1:-1] = stationary_probs # from BEGIN
        full_matrix[:,-1] = 1.0  #  to END
        T = full_matrix
        state_directions_list = list(enumerate(pairTM.Tags))
    
    this_row_last = lambda (state, (dx,dy)):(not (dx or dy), not dx)
    state_directions_list.sort(key=this_row_last)
    # sorting into desirable order (sort may not be necessary)
    
    state_directions = numpy.zeros([len(state_directions_list), 4], int)
    for (i, (state, emit)) in enumerate(state_directions_list):
        (dx, dy) = emit
        assert dx==0 or dy==0 or dx==dy
        bin = max(dx, dy)-1
        state_directions[i] = (state+1, bin, dx>0, dy>0)
    return (state_directions, T)


class PairEmissionProbs(object):
    """A pair of sequences and the psubs that relate them, but no gap TM"""
    def __init__(self, pair, bins):
        self.pair = pair
        self.bins = bins
        self.scores = {}
    
    def makePartialLikelihoods(self, use_cost_function):
        # use_cost_function specifies whether eqn 2 of Loytynoja & Goldman 
        # is applied.  Without it insertions may be favored over deletions
        # because the emission probs of the insert aren't counted.
        plhs = [[], []]
        gap_plhs = [[], []]
        for bin in self.bins:
            for (dim, pred) in enumerate(self.pair.children):
                # first and last should be special START and END nodes
                plh = numpy.inner(pred.plh, bin.ppsubs[dim])
                gap_plh = numpy.inner(pred.plh, bin.mprobs)
                if use_cost_function:
                    plh /= gap_plh[..., numpy.newaxis]
                    gap_plh[:] = 1.0
                else:
                    gap_plh[0] = gap_plh[-1] = 1.0
                gap_plhs[dim].append(gap_plh)
                plhs[dim].append(plh)
        for dim in [0,1]:
            plhs[dim] = numpy.array(plhs[dim])
            gap_plhs[dim] = numpy.array(gap_plhs[dim])
        return (plhs, gap_plhs)
    
    def _makeEmissionProbs(self, use_cost_function):
        (plhs, gap_scores) = self.makePartialLikelihoods(use_cost_function)
        match_scores = numpy.zeros([len(self.bins)] + self.pair.uniq_size,
                                    float)
        for (b, (x, y, bin)) in enumerate(zip(plhs[0], plhs[1], self.bins)):
            match_scores[b] = numpy.inner(x*bin.mprobs, y)
        match_scores[:, 0, 0] = match_scores[:, -1, -1] = 1.0
        return (match_scores, gap_scores)
    
    def _getEmissionProbs(self, use_logs, use_cost_function):
        key = (use_logs, use_cost_function)
        if key not in self.scores:
            if use_logs:
                (M, (X, Y)) = self._getEmissionProbs(False, use_cost_function)
                (M, X, Y) = [numpy.log(a) for a in [M, X, Y]]
                self.scores[key] = (M, (X, Y))
            else:
                self.scores[key] = self._makeEmissionProbs(use_cost_function)
        return self.scores[key]
    
    def _calc_global_probs(self, pair, scores, kw, state_directions,
            T, rows, cells, backward=False):
        if kw['use_logs']:
            (impossible, inevitable) = (-numpy.inf, 0.0)
        else:
            (impossible, inevitable) = (0.0, 1.0)
        (M, N) = pair.size
        (mantissas, exponents) = rows
        mantissas[0,0,0] = inevitable
        if exponents is not None:
            exponents[0,0,0] = 0
        probs = []
        last_i = -1
        to_end = numpy.array([(len(T)-1, 0, 0, 0)])
        for (state, (i,j)) in cells:
            if i > last_i:
                rr = pair.calcRows(last_i+1, i+1, 0, N-1,
                    state_directions, T, scores, rows, None, None, **kw)
            else:
                assert i == last_i, (i, last_i)
            last_i = i
            T2 = T.copy()
            if backward:
                T2[:, -1] = T[:, state]
            else:
                T2[:, -1] = impossible
                T2[state, -1] = inevitable
            global DEBUG
            _d = DEBUG
            DEBUG = False
            (maxpos, state, score) = pair.calcRows(
                    i, i+1, j, j+1, to_end, T2, scores, rows, None, None, **kw)
            DEBUG = _d
            probs.append(score)
        return numpy.array(probs)
        
    def __getitem__(self, index):
        assert len(index) == 2, index
        return PairEmissionProbs(self.pair[index], self.bins)
    
    def hirschberg(self, TM, dp_options):
        """linear-space alignment algorithm
        A linear space algorithm for computing maximal common subsequences.
        Comm. ACM 18,6 (1975) 341-343.
        Dan Hirschberg
        """
        (states, T) = TM
        
        # This implementation is slightly complicated by the need to handle 
        # alignments of alignments, because a subalignment may have an indel
        # spanning the midpoint where we want to divide the problem in half.
        # That must be the sense in which the fatter and slower method used
        # in "Prank" (Loytynoja A, Goldman N. 2005) is "computationally more 
        # attractive": for them there is only one link in the list:
        links = self.pair.children[0].midlinks()

        def _half_row_scores(backward):
            T2 = T.copy()
            if backward:
                T2[0, 1:-1] = 1.0  # don't count the begin state transition twice
            else:
                T2[1:-1:,-1] = 1.0  # don't count the end state transition twice
            return self.scores_at_rows(
                (states, T2), dp_options, 
                last_row=[link[backward] for link in links],
                backward = not not backward)
        
        (last_row1, last_row2) = parallel.map(_half_row_scores, [0,1])
        middle_row = (last_row1 + last_row2)
        (link, anchor, anchor_state) = numpy.unravel_index(
            numpy.argmax(middle_row.flat), middle_row.shape)
        score = middle_row[link, anchor, anchor_state]
        (join1, join2) = links[link]
        
        def _half_solution(part):
            T2 = T.copy()
            if part == 0:
                T2[-1] = 0.0
                T2[anchor_state, -1] = 1.0  # Must end with the anchor's state
                part = self[:join1, :anchor]
            else:
                T2[0, :] = T[anchor_state, :]  # Starting from the anchor's state
                part = self[join2:, anchor:]
            return part.dp((states, T2), dp_options)
        
        [(s1, tb_a), (s2, tb_b)] = parallel.map(_half_solution, [0,1])
        tb = tb_a + tb_b.offset(join2, anchor)
        # Same return as for self.dp(..., tb=...)
        return score, tb
    
    def scores_at_rows(self, TM, dp_options, last_row, backward=False):
        """A score array shaped [rows, columns, states] but only for those
        row numbers requested.  Used by Hirschberg algorithm"""
        (M, N) = self.pair.size
        (state_directions, T) = TM
        reverse = bool(dp_options.backward) ^ bool(backward)
        cells = []
        p_rows = sorted(set(last_row))
        if reverse:
            p_rows.reverse()
        for i in p_rows:
            for j in range(0, N-1):
                for state in range(len(T)-1):
                    if reverse:
                        cells.append((state, (M-2-i, N-2-j)))
                    else:
                        cells.append((state, (i, j)))
        probs = self.dp(TM, dp_options, cells=cells, backward=backward)
        probs = numpy.array(probs)
        probs.shape = (len(p_rows), N-1, len(T)-1)
        result = numpy.array([
            probs[p_rows.index(i)] for i in last_row])
        return result
        
    def dp(self, TM, dp_options, cells=None, backward=False):
        """Score etc. from a Dynamic Programming function applied to this pair.
        
        TM - (state_directions, array) describing the Transition Matrix.
        dp_options - instance of DPFlags indicating algorithm etc.
        cells - List of (state, posn) for which posterior probs are requested.
        backward - run algorithm in reverse order.
        """
        (state_directions, T) = TM
        if dp_options.viterbi and cells is None:
            encoder = self.pair.getPointerEncoding(len(T))
            problem_dimensions = self.pair.size + [len(T)]
            problem_size = numpy.product(problem_dimensions)
            memory = problem_size * encoder.bytes / 10**6
            if dp_options.local:
                msg = 'Local alignment'
            elif cells is not None:
                msg = 'Posterior probs'
            elif self.pair.size[0]-2 >= 3 and not backward and (
                    problem_size > HIRSCHBERG_LIMIT or 
                    parallel.getCommunicator().Get_size() > 1):
                 return self.hirschberg(TM, dp_options)
            else:
                msg = 'dp'
            if memory > 500:
                warnings.warn('%s will use > %sMb.' % (msg, memory))
            track = encoder.getEmptyArray(problem_dimensions)
        else:
            track = encoder = None
        
        kw = dict(
                use_scaling=dp_options.use_scaling,
                use_logs=dp_options.use_logs,
                viterbi=dp_options.viterbi,
                local=dp_options.local)
        
        if dp_options.backward:
            backward = not backward
        
        if backward:
            pair = self.pair.backward()
            origT = T
            T = numpy.zeros(T.shape, float)
            T[1:-1,1:-1] = numpy.transpose(origT[1:-1,1:-1])
            T[0,:] = origT[:, -1]
            T[:,-1] = origT[0,:]
        else:
            pair = self.pair
        
        if dp_options.use_logs:
            T = numpy.log(T)
        
        scores = self._getEmissionProbs(
                dp_options.use_logs, dp_options.use_cost_function)
        
        rows = pair.getEmptyScoreArrays(len(T), dp_options)
        
        if cells is not None:
            assert not dp_options.local
            result = self._calc_global_probs(
                    pair, scores, kw, state_directions, T, rows, cells,
                    backward)
        else:
            (M, N) = pair.size
            if dp_options.local:
                (maxpos, state, score) =  pair.calcRows(1, M-1, 1, N-1,
                    state_directions, T, scores, rows, track, encoder, **kw)
            else:
                pair.calcRows(0, M-1, 0, N-1,
                    state_directions, T, scores, rows, track, encoder, **kw)
                end_state_only = numpy.array([(len(T)-1, 0, 1, 1)])
                (maxpos, state, score) = pair.calcRows(M-1, M, N-1, N,
                    end_state_only, T, scores, rows, track, encoder, **kw)
                    
            if track is None:
                result = score
            else:
                tb = self.pair.traceback(track, encoder, maxpos, state,
                    skip_last = not dp_options.local)
                result = (score, tb)
        return result
        
    def getAlignable(self, aligned_positions, ratio=None):
        assert ratio is None, "already 2-branched"
        children = self.pair.children # alignables
        leaves = [c.leaf for c in children]
        aligned_positions = [posn for (bin, posn) in aligned_positions]
        pog = self.pair.getPOG(aligned_positions)
        edge = LikelihoodTreeEdge(leaves, 'parent', pog.getAlignedPositions())
        (plhs, gapscores) = self.makePartialLikelihoods(use_cost_function=False)
        plh = self.pair.edge2plh(edge, plhs)
        assert len(plh) == 1, ('bins!', len(plh))
        leaf = edge.asLeaf(plh[0]) # like profile
        return AlignablePOG(leaf, pog, children)
    
    def makePairHMM(self, transition_matrix, finite=False):
        # whether TM includes Begin and End states
        return PairHMM(self, transition_matrix, finite=finite)
    

class BinData(object):
    def __init__(self, mprobs, Qd, rate=1.0):
        self.Qd = Qd
        self.mprobs = mprobs
        self.rate = rate
    
    def forLengths(self, length1, length2):
        psub1 = self.Qd(length1 * self.rate)
        psub2 = self.Qd(length2 * self.rate)
        return PairBinData(self.mprobs, psub1, psub2)
    

class PairBinData(object):
    def __init__(self, mprobs, psub1, psub2):
        self.mprobs = mprobs
        self.ppsubs = [psub1, psub2]
    

class ReversiblePairEmissionProbs(object):
    """A pair of sequences and the psubs that relate them, but no gap TM
    
    'Reversible' in the sense that how `length` is divided between the 2 edges
    shouldn't change the forward and viterbi results"""
    
    def __init__(self, pair, bins, length):
        self.pair = pair
        self.bins = bins
        self.length = length
        self.midpoint = self._makePairEmissionProbs(0.5)
    
    def dp(self, *args, **kw):
        return self.midpoint.dp(*args, **kw)
    
    def _makePairEmissionProbs(self, ratio):
        assert 0.0 <= ratio <= 1.0
        lengths = [self.length * ratio, self.length * (1.0-ratio)]
        pbins = [bin.forLengths(*lengths) for bin in self.bins]
        return PairEmissionProbs(self.pair, pbins)
    
    def getAlignable(self, a_p, ratio=None):
        # a_p alignment positions
        if ratio in [None, 0.5]:
            ep = self.midpoint
        else:
            ep = self._makePairEmissionProbs(ratio=ratio)
        return ep.getAlignable(a_p)
    
    def makePairHMM(self, transition_matrix):
        return PairHMM(self, transition_matrix)
    

class DPFlags(object):
    def __init__(self, viterbi, local=False, use_logs=None,
            use_cost_function=True, use_scaling=None, backward=False):
        if use_logs is None:
            use_logs = viterbi and not use_scaling
        if use_scaling is None:
            use_scaling = not use_logs
        if use_logs:
            assert viterbi and not use_scaling
        self.use_cost_function = use_cost_function
        self.local = local
        self.use_logs = use_logs
        self.use_scaling = use_scaling
        self.viterbi = viterbi
        self.backward = backward
        self.as_tuple = (local, use_logs, use_cost_function, use_scaling,
                viterbi, backward)
    
    def __hash__(self):
        return hash(self.as_tuple)
    
    def __eq__(self, other):
        return self.as_tuple == other.as_tuple
    

class PairHMM(object):
    def __init__(self, emission_probs, transition_matrix, finite=False):
        self.emission_probs = emission_probs
        self.transition_matrix = transition_matrix
        self._transition_matrix = adaptPairTM(transition_matrix,
                finite=finite)
        self.results = {}
    
    def _getDPResult(self, **kw):
        dp_options = DPFlags(**kw)
        if dp_options not in self.results:
            self.results[dp_options] = \
                self.emission_probs.dp(self._transition_matrix, dp_options)
        return self.results[dp_options]
    
    def getForwardScore(self, **kw):
        return self._getDPResult(viterbi=False, **kw)
    
    def _getPosteriorProbs(self, tb, **kw):
        cells = tb.asStatePosTuples()
        score = self.getForwardScore(**kw)
        dp_options = DPFlags(viterbi=False, **kw)
        fwd = self.emission_probs.dp(self._transition_matrix, dp_options, cells)
        (N, M) = self.emission_probs.pair.size
        cells = [(state, (N-x-2, M-y-2)) for (state, (x,y)) in cells]
        tb.reverse()
        bck = self.emission_probs.dp(self._transition_matrix, dp_options, cells,
                backward=True)[::-1]
        return fwd + bck - score
    
    def getViterbiPath(self, **kw):
        result = self._getDPResult(viterbi=True,**kw)
        return ViterbiPath(self, result, **kw)
    
    def getViterbiScoreAndAlignment(self, ratio=None, **kw):
        # deprecate
        vpath = self.getViterbiPath(**kw)
        return (vpath.getScore(), vpath.getAlignment(ratio=ratio))
    
    def getLocalViterbiScoreAndAlignment(self, posterior_probs=False, **kw):
        # Only for pairwise.  Merge with getViterbiScoreAndAlignable above.
        # Local and POGs doesn't mix well.
        (vscore, tb) = self._getDPResult(viterbi=True, local=True, **kw)
        (state_directions, T) = self._transition_matrix
        aligned_positions = tb.asBinPosTuples(state_directions)
        seqs = self.emission_probs.pair.getSeqNamePairs()
        aligned_positions = [posn for (bin, posn) in aligned_positions]
        word_length = self.emission_probs.pair.alphabet.getMotifLen()
        align = alignment_traceback(seqs, aligned_positions, word_length)
        if posterior_probs:
            pp = self._getPosteriorProbs(tb, use_cost_function=False)
            return (vscore, align, numpy.exp(pp))
        else:
            return (vscore, align)
    

class ViterbiPath(object):
    def __init__(self, pair_hmm, result, **kw):
        (self.vscore, self.tb) = result
        (state_directions, T) = pair_hmm._transition_matrix
        self.aligned_positions = self.tb.asBinPosTuples(state_directions)
        self.pair_hmm = pair_hmm
        self.kw = kw
    
    def getScore(self):
        return self.vscore
    
    def getAlignable(self, ratio=None):
        # Because the alignment depends on the total length (so long as the
        # model is reversable!) the same cached viterbi result can be re-used
        # to calculate the partial likelihoods even if the root of the 2-seq
        # tree is moved around.
        alignable = self.pair_hmm.emission_probs.getAlignable(
                self.aligned_positions, ratio=ratio)
        return alignable
    
    def getAlignment(self, **kw):
        alignable = self.getAlignable(**kw)
        return alignable.getAlignment()
    
    def getPosteriorProbs(self):
        pp = self.pair_hmm._getPosteriorProbs(self.tb, use_cost_function=True)
        return numpy.exp(pp)