This file is indexed.

/usr/share/pyshared/cogent/draw/compatibility.py is in python-cogent 1.5.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#!/usr/bin/env python

"""Visualisation of phylogenetic compatibility within an alignment.
Jakobsen & Easteal, CABIOS 12(4), 1996
Jakobsen, Wilson & Easteal, Mol. Biol. Evol. 14(5), 1997 
"""

from __future__ import division
import sys
import math
import numpy
import numpy.random
import operator
import matplotlib.pyplot as plt
import matplotlib.ticker
import matplotlib.colors

from cogent.draw.linear import Display

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"

def order_to_cluster_similar(S, elts=None, start=None):
    """Order so as to keep the most similar parts adjacent to each other
    S is expected to be a square matrix, and the returned list of 
    ordinals is len(S) long."""
    position = {}
    unavailable = set()
    if elts is not None:
        if len(elts) < 2:
            return elts
        elts = set(elts)
        for x in range(len(S)):
            if x != start and x not in elts:
                unavailable.add(x)
    if start is not None:
        position[start] = (False, [start])
    similarity = [numpy.unravel_index(p, S.shape) 
                for p in numpy.argsort(S, axis=None)]
    for (x, y) in similarity[::-1]:
        if x==y or x in unavailable or y in unavailable:
            continue
        (x_end, x_run) = position.get(x, (None, [x]))
        (y_end, y_run) = position.get(y, (None, [y]))
        if x_run is y_run:
            continue
        if x_end is not None:
            if not x_end:
                x_run.reverse()
            unavailable.add(x)
        if y_end is not None:
            if y_end:
                y_run.reverse()
            unavailable.add(y)
        run = x_run + y_run
        position[run[0]] = (False, run)
        position[run[-1]] = (True, run)
    if start is not None:
        if run[-1] == start:
            run.reverse()
        run = run[1:]
    return run

def tied_segments(scores):
    """(start, end) of each run of equal values in scores
    
    >>> tied_segments([1,1,1,2])
    [(0, 3), (3, 4)]
    """
    pos = numpy.flatnonzero(numpy.diff(scores))
    pos = numpy.concatenate(([0],pos+1,[len(scores)]))
    return zip(pos[:-1],pos[1:])

def order_tied_to_cluster_similar(S, scores):
    """Use similarity measure S to make similar elements
    adjacent, but only to break ties in the primary order
    defined by the list of scores"""
    assert S.shape == (len(scores), len(scores))
    new_order = []
    start = None    
    for (a,b) in tied_segments(scores):
        useful = range(a,b)
        if start is not None:
            useful.append(start)
            start = len(useful)-1
        useful = numpy.array(useful)
        S2 = S[useful,:]
        S2 = S2[:,useful]
        sub_order = order_to_cluster_similar(S2, range(b-a), start)
        new_order.extend([useful[i] for i in sub_order])
        start = new_order[-1]
    assert set(new_order) == set(range(len(scores))) 
    return new_order

def bit_encode(x, _bool2num=numpy.array(["0","1"]).take):
    """Convert a boolean array into an integer"""
    return int(_bool2num(x).tostring(), 2)

def bit_decode(x, numseqs):
    """Convert an integer into a boolean array"""
    result = numpy.empty([numseqs], bool)
    bit = 1 << (numseqs-1)
    for i in range(numseqs):
        result[i] = bit & x
        bit >>= 1
    return result


def binary_partitions(alignment):
    """Returns (sites, columns, partitions) 
    sites[informative column number] = alignment position number
    columns[informative column number] = distinct partition number
    partitions[distinct partition number] = (partition, mask) as ints
    """
    sites = []
    columns = []
    partitions = []
    partition_index = {}
    for (site, column) in enumerate(alignment.Positions):
        column = numpy.array(column)
        (A, T, C, G, R, Y, W, S, U) = [
            bit_encode(column == N) for N in "ATCGRYWSU"]
        T |= U
        for split in [([A, G, R], [C, T, Y]), ([A, T, W], [G, C, S])]:
            halves = []
            for char_group in split:
                X = reduce(operator.or_, char_group)
                if not (X & (X - 1)):
                    break  # fewer than 2 bits set in X
                halves.append(X)
            else:
                (X, Z) = sorted(halves)
                partition = (X,X|Z)
                if partition not in partition_index:
                    partition_index[partition] = len(partitions)
                    partitions.append(partition)
                sites.append(site)
                columns.append(partition_index[partition])
                break  # if R/Y split OK no need to consider W/S split. 
    return (sites, columns, partitions)

def min_edges(columns):
    """Given two boolean arrays each representing an informative alignment 
    position, there are 4 possible combinations for each sequence: 
    TT, TF, FT and FF.
    If N of these 4 possibilities are found then there must be at least 
    N-1 tree edges on which mutations occured
    As a special case, the diagonal values are set to 0 rather than, 
    as theory suggests, 1.  This is simply a convenience for later 
    drawing code"""  
    N = len(columns)
    result = numpy.zeros([N, N], int)
    for i in range(0, N-1):
        (a, mask_a) = columns[i]
        for j in range(i+1, N):
            (b, mask_b) = columns[j]
            mask = mask_a & mask_b
            (na, nb) = (~a, ~b)
            combos = [c & mask for c in [a&b, a&nb, na&b, na&nb]]
            combos = [c for c in combos if c]
            result[i,j] = result[j,i] = len(combos) - 1
    return result

def neighbour_similarity_score(matrix):
    left = matrix[:-1]
    right = matrix[1:]
    upper = matrix[:,:-1]
    lower = matrix[:,1:]
    same = (lower == upper).sum() + (left == right).sum()
    neighbours = numpy.product(left.shape)+numpy.product(upper.shape)
    return same / neighbours

def shuffled(matrix):
    assert matrix.shape == (len(matrix), len(matrix)), matrix.shape
    index = numpy.random.permutation(numpy.arange(len(matrix)))
    return matrix[index,:][:,index]
    
def nss_significance(matrix, samples=10000):
    score = neighbour_similarity_score(matrix)
    scores = numpy.empty([samples])
    for i in range(samples):
        s = neighbour_similarity_score(shuffled(matrix))
        scores[i] = s
    scores.sort()
    p = (samples-scores.searchsorted(score)+1) / samples
    return (score, sum(scores)/samples, p)
    
def inter_region_average(a):
    return a.sum()/numpy.product(a.shape)
    
def intra_region_average(a):
    d = numpy.diag(a)    # ignore the diagonal
    return (a.sum()-d.sum())/(numpy.product(a.shape)-len(d))
    
def integer_tick_label(sites):
    def _formatfunc(x, pos, _sites=sites, _n=len(sites)):
        if 0 < x < _n:
            return str(_sites[int(x)])
        else:
            return ""
    return _formatfunc    

def boolean_similarity(matrix):
    # same as numpy.equal.outer(matrix, matrix).trace(axis1=1, axis2=3)
    # but that would use much memory
    true = matrix.T.astype(int)
    false = (~matrix).T.astype(int)
    both_true = numpy.inner(true, true)
    both_false = numpy.inner(false, false)
    return both_true + both_false
    
def partimatrix(alignment, display=False, samples=0, s_limit=0, title="",
        include_incomplete=False, print_stats=True, max_site_labels=50):
    if print_stats:
        print "%s sequences in %s bp alignment" % (
                alignment.getNumSeqs(), len(alignment))
    (sites, columns, partitions) = binary_partitions(alignment)
    if print_stats:
        print "%s unique binary partitions from %s informative sites" % (
                len(partitions), len(sites))
    partpart = min_edges(partitions)      # [partition,partition]
    partimatrix = partpart[columns,:]     # [site, partition]
    sitematrix = partimatrix[:,columns]   # [site, site]
    
    # RETICULATE, JE 1996
    
    compatiblity = sitematrix <= 2
    if print_stats:
        print "Overall compatibility %.6f" % intra_region_average(compatiblity)
        if samples == 0:
            print "Neighbour similarity score = %.6f" % \
                    neighbour_similarity_score(compatiblity)
        else:
            print "Neighbour similarity = %.6f, avg random = %.6f, p < %s" % \
                    nss_significance(compatiblity, samples=samples)
        
    # PARTIMATRIX, JWE 1997
    
    # Remove the incomplete partitions with gaps or other ambiguities
    mask = 2**alignment.getNumSeqs()-1
    complete = [i for (i,(x, xz)) in enumerate(partitions) if xz==mask]
    if not include_incomplete:
        partimatrix = partimatrix[:,complete]
        partitions = [partitions[i] for i in complete]
    # For scoring/ordering purposes, also remove the incomplete sequences
    complete_columns = [i for (i,c) in enumerate(columns) if c in complete]
    scoreable_partimatrix = partimatrix[complete_columns, :]
    
    # Order partitions by increasing conflict score
    conflict = (scoreable_partimatrix > 2).sum(axis=0)
    conflict_order = numpy.argsort(conflict)
    partimatrix = partimatrix[:, conflict_order]
    partitions = [partitions[i] for i in conflict_order]
    scoreable_partimatrix = partimatrix[complete_columns, :]
    support = (scoreable_partimatrix == 0).sum(axis=0)
    consist = (scoreable_partimatrix <= 2).sum(axis=0)
    conflict = (scoreable_partimatrix > 2).sum(axis=0)
    
    # Similarity measure between partitions
    O = boolean_similarity(scoreable_partimatrix <= 2)
    s = 1.0*len(complete_columns)
    O = O.astype(float) / s
    p,q = consist/s, conflict/s
    E = numpy.outer(p,p) + numpy.outer(q,q)
    S = (O-E)/numpy.sqrt(E*(1-E)/s)
    
    # Order partitions for better visual grouping
    if "order_by_conflict":
        order = order_tied_to_cluster_similar(S, conflict)
    else:
        order = order_to_cluster_similar(S)
        half = len(order) // 2
        if sum(conflict[order[:half]]) > sum(conflict[order[half:]]):
            order.reverse()
    
    partimatrix = partimatrix[:, order]
    conflict = conflict[order]
    support = support[order]
    partitions = [partitions[i] for i in order]
    
    if display:
        figwidth = 8.0

        (c_size, p_size) = partimatrix.shape
        s_size = num_seqs = alignment.getNumSeqs()
        
        # Layout (including figure height) chosen to get aspect ratio of
        # 1.0 for the compatibility matrix, and if possible the other
        # matrices.
        
        if s_size > s_limit:
            # too many species to show
            s_size = 0
        else:
            # distort squares to give enough space for species names
            extra = max(1.0, (12/80)/(figwidth/(c_size + p_size)))
            p_size *= numpy.sqrt(extra)
            s_size *= extra
        
        genemap = Display(alignment, recursive=s_size>0, 
                colour_sequences=False, draw_bases=False)
        annot_width = max(genemap.height / 80, 0.1)
        figwidth = max(figwidth, figwidth/2 + annot_width)
        
        bar_height = 0.5
        link_width = 0.3
        x_margin = 0.60
        y_margin = 0.35
        xpad = 0.05
        ypad = 0.2
        (x, y) = (c_size + p_size, c_size + s_size)
        x_scale = y_scale = (figwidth-2*x_margin-xpad-link_width-annot_width)/x
        figheight = y_scale * y + 2*y_margin + 2*ypad + bar_height
        x_scale /= figwidth
        y_scale /= figheight
        x_margin /= figwidth
        y_margin /= figheight
        xpad /= figwidth
        ypad /= figheight
        bar_height /= figheight
        link_width /= figwidth
        annot_width /= figwidth
        (c_width, c_height) = (c_size*x_scale, c_size*y_scale)
        (p_width, s_height) = (p_size*x_scale, s_size*y_scale)
        vert = (x_margin + xpad + c_width)
        top = (y_margin + c_height + ypad)
        fig = plt.figure(figsize=(figwidth,figheight))
        kw = dict(axisbg=fig.get_facecolor())
        axC = fig.add_axes([x_margin, y_margin, c_width, c_height], **kw)
        axP = fig.add_axes([vert, y_margin, p_width, c_height], 
                sharey=axC, **kw)
        axS = fig.add_axes([vert, top, p_width, s_height or .001], 
                sharex=axP, **kw)
        axB = fig.add_axes([vert, top+ypad+s_height, p_width, bar_height], 
                sharex=axP, **kw)
        axZ = fig.add_axes([vert+p_width, y_margin, link_width, c_height], 
            frameon=False)
            
        axA = genemap.asAxes(
            fig, [vert+p_width+link_width, y_margin, annot_width, c_height], 
            vertical=True, labeled=True)
            
        axP.yaxis.set_visible(False)
        #for ax in [axC, axP, axS]:
            #ax.set_aspect(adjustable='box', aspect='equal')
        
        fig.text(x_margin+c_width/2, .995, title, ha='center', va='top')
        
        if not s_size:
            axS.set_visible(False)
        # No ticks for these non-float dimensions
        for axes in [axB, axC, axS, axP]:
            for axis in [axes.xaxis, axes.yaxis]:
                for tick in axis.get_major_ticks():
                    tick.gridOn = False
                    tick.tick1On = False
                    tick.tick2On = False
                    tick.label1.set_size(8)
                    tick.label2.set_size(8)
                    if axis is axes.xaxis:
                        tick.label1.set_rotation('vertical')

        # Partition dimension
        for axis in [axS.xaxis, axP.xaxis, axB.xaxis, axB.yaxis]:
            axis.set_major_formatter(matplotlib.ticker.NullFormatter())
            axis.set_minor_formatter(matplotlib.ticker.NullFormatter())
        
        # Site dimension
        if c_size > max_site_labels:
            for axis in [axC.yaxis, axC.xaxis]:
                axis.set_visible(False)
        else:
            isl = integer_tick_label(sites)
            for axis in [axC.yaxis, axC.xaxis]:            
                axis.set_minor_locator(matplotlib.ticker.IndexLocator(1,0))
                axis.set_minor_formatter(matplotlib.ticker.NullFormatter())
                axis.set_major_locator(matplotlib.ticker.IndexLocator(1,0.5))
                axis.set_major_formatter(matplotlib.ticker.FuncFormatter(isl))
        
        # Species dimension
        if s_size:
            seq_names = [name.split('  ')[0] 
                    for name in alignment.getSeqNames()]
            axS.yaxis.set_minor_locator(matplotlib.ticker.IndexLocator(1,0))
            axS.yaxis.set_minor_formatter(matplotlib.ticker.NullFormatter())
            axS.yaxis.set_major_locator(matplotlib.ticker.IndexLocator(1,0.5))
            axS.yaxis.set_major_formatter(matplotlib.ticker.FixedFormatter(seq_names))
            #axS.yaxis.grid(False) #, 'minor')
    
        # Display the main matrices: compatibility and partimatrix
        axC.pcolorfast(compatiblity, cmap=plt.cm.gray)
        partishow = partimatrix <= 2
        axP.pcolorfast(partishow, cmap=plt.cm.gray)
        axP.set_autoscale_on(False)
        axC.plot([0,c_size], [0, c_size], color='lightgreen')
        (sx, sy) = numpy.nonzero(partimatrix.T==0)
        axP.scatter(sx+0.5, sy+0.5, color='lightgreen', marker='^',
            s=15)
        
        # Make [partition, sequence] matrix
        # Not a good idea with too many sequences
        if s_size:
            partseq1 = numpy.empty([len(partitions), num_seqs], bool)
            partseq2 = numpy.empty([len(partitions), num_seqs], bool)
            for (i, (x, xz)) in enumerate(partitions):
                partseq1[i] = bit_decode(x, num_seqs)
                partseq2[i] = bit_decode(xz^x, num_seqs)
            
            # Order sequqnces so as to place similar sequences adjacent
            O = boolean_similarity(partseq1)
            order = order_to_cluster_similar(O)
            partseq1 = partseq1[:,order]
            partseq2 = partseq2[:,order]
            seq_names = [seq_names[i] for i in order]
            axS.set_ylim(0, len(seq_names))
            axS.set_autoscale_on(False)
    
            for (halfpart,color) in [(partseq1, 'red'),(partseq2, 'blue')]:
                (sx, sy) = numpy.nonzero(halfpart)
                axS.scatter(sx+0.5, sy+0.5, color=color, marker='o')
            axS.grid(False)
            #axS.yaxis.tick_right()
            #axS.yaxis.set_label_position('right')
        
        # Bar chart of partition support and conflict scores
        #axB.set_autoscalex_on(False)
        if conflict.sum():
            axB.bar(numpy.arange(len(partitions)), -conflict/conflict.sum(), 
                1.0, color='black', align='edge')
        if support.sum():
            axB.bar(numpy.arange(len(partitions)), +support/support.sum(), 
                1.0, color='lightgreen', align='edge')
        axB.set_xlim(0.0, len(partitions))
        
        # Alignment features
        axA.set_ylim(0, len(alignment))
        axA.set_autoscale_on(False)
        axA.yaxis.set_major_formatter(
                matplotlib.ticker.FuncFormatter(lambda y,pos:str(int(y))))
        axA.yaxis.tick_right()
        axA.yaxis.set_label_position('right')
        axA.xaxis.tick_top()
        axA.xaxis.set_label_position('top')
        #axA.xaxis.set_visible(False)
        
        # "Zoom lines" linking informative-site coords to alignment coords 
        from matplotlib.patches import PathPatch
        from matplotlib.path import Path
        axZ.set_xlim(0.0,1.0)
        axZ.set_xticks([])
        axZ.set_ylim(0, len(alignment))
        axZ.set_yticks([])
        zoom = len(alignment) / len(sites)
        vertices = []
        for (i,p) in enumerate(sites):
            vertices.extend([(.1, (i+0.5)*zoom), (.9,p+0.5)])
            axA.axhspan(p, p+1, facecolor='green', edgecolor='green', alpha=0.3)
        ops = [Path.MOVETO, Path.LINETO] * (len(vertices)//2)
        path = Path(vertices, ops)
        axZ.add_patch(PathPatch(path, fill=False, linewidth=0.25))
        
        # interactive navigation messes up axZ.  Could use callbacks but
        # probably not worth the extra complexity.
        for ax in [axC, axP, axS, axB, axZ, axA]:
            ax.set_navigate(False)

        return fig

    
if __name__ == '__main__':
    from cogent import LoadSeqs, DNA
    import sys, optparse, os.path
    parser = optparse.OptionParser("usage: %prog [options] alignment")
    parser.add_option("-p", "--print", action="store_true", 
            default=True, dest="print_stats", 
            help="print neighbour similarity score etc.")
    parser.add_option("-d", "--display", action="store_true", 
            default=False, dest="display", 
            help="show matrices via matplotlib")
    parser.add_option("-i", "--incomplete", action="store_true", 
            default=False, dest="include_incomplete", 
            help="include partitions containing ambiguities")
    parser.add_option("-t", "--taxalimit", 
                dest="s_limit", default=20, type="int", 
                help="maximum number of species that can be displayed")
    parser.add_option("-s", "--samples",
                dest="samples", default=10000, type="int",
                help="samples for significance test")
    (options, args) = parser.parse_args()
    if len(args) != 1:
        parser.print_help()
        sys.exit(1)        
    alignment = LoadSeqs(args[0], moltype=DNA)
    kw = vars(options)
    kw['title'] = os.path.splitext(os.path.basename(args[0]))[0]
    fig = partimatrix(alignment, **kw)
    if fig:
        plt.show()