This file is indexed.

/usr/share/pyshared/cogent/evolve/models.py is in python-cogent 1.5.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#! /usr/bin/env python
"""A collection of pre-defined models.  These are provided for convenience so that
users do not need to keep reconstructing the standard models.  We encourage users
to think about the assumptions in these models and consider if their problem could
benefit from a user defined model.
Note that models that do not traditionally deal with gaps are implemented with
gap recoding that will convert gaps to Ns, and model gaps set to False."""
#The models are constructed in a strait forward manner with no attempt to condense
#this file using functions etc. to allow each model to serve as an example for users
#wishing to construct their own models

import numpy
from cogent.evolve import substitution_model
from cogent.evolve.predicate import MotifChange, replacement
from cogent.evolve.solved_models import F81, HKY85, TN93

__author__ = "Matthew Wakefield"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Matthew Wakefield", "Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Matthew Wakefield"
__email__ = "wakefield@wehi.edu.au"
__status__ = "Production"

nucleotide_models = ['JC69','K80', 'F81','HKY85', 'TN93', 'GTR']

codon_models = ['CNFGTR', 'CNFHKY', 'MG94HKY', 'MG94GTR', 'GY94', 'H04G', 'H04GK', 'H04GGK']

protein_models = [ 'DSO78', 'AH96', 'AH96_mtmammals', 'JTT92', 'WG01']

    
# Substitution model rate matrix predicates
_gtr_preds = [MotifChange(x,y) for x,y in ['AC', 'AG', 'AT', 'CG', 'CT']]
_kappa = (~MotifChange('R','Y')).aliased('kappa')
_omega = replacement.aliased('omega')
_cg = MotifChange('CG').aliased('G')
_cg_k = (_cg & _kappa).aliased('G.K')

def K80(**kw):
    """Kimura 1980"""
    return HKY85(equal_motif_probs=True, optimise_motif_probs=False, **kw)

def JC69(**kw):
    """Jukes and Cantor's 1969 model"""
    return F81(equal_motif_probs=True, optimise_motif_probs=False, **kw)

def GTR(**kw):
    """General Time Reversible nucleotide substitution model."""
    return substitution_model.Nucleotide(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'GTR',
            predicates = _gtr_preds,
            **kw)
    

# Codon Models
def CNFGTR(**kw):
    """Conditional nucleotide frequency codon substitution model, GTR variant
    (with params analagous to the nucleotide GTR model).
    
    See Yap, Lindsay, Easteal and Huttley, Mol Biol Evol, In press."""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'CNFGTR',
            predicates = _gtr_preds+[_omega],
            mprob_model='conditional',
            **kw)
        
    

def CNFHKY(**kw):
    """Conditional nucleotide frequency codon substitution model, HKY variant
    (with kappa, the ratio of transitions to transversions)
    
    See Yap, Lindsay, Easteal and Huttley, Mol Biol Evol, In press."""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'CNFHKY',
            predicates = [_kappa, _omega],
            mprob_model='conditional',
            **kw)
    

def MG94HKY(**kw):
    """Muse and Gaut 1994 codon substitution model, HKY variant (with kappa,
    the ratio of transitions to transversions)
    
    see, Muse and Gaut, 1994, Mol Biol Evol, 11, 715-24"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'MG94',
            predicates = [_kappa, _omega],
            mprob_model='monomer',
            **kw)
    

def MG94GTR(**kw):
    """Muse and Gaut 1994 codon substitution model, GTR variant (with params
    analagous to the nucleotide GTR model)
    
    see, Muse and Gaut, 1994, Mol Biol Evol, 11, 715-24"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'MG94',
            predicates = _gtr_preds+[_omega],
            mprob_model='monomer',
            **kw)
    

def GY94(**kw):
    """Goldman and Yang 1994 codon substitution model.
    
    see, N Goldman and Z Yang, Mol. Biol. Evol., 11(5):725-36, 1994."""
    return Y98(**kw)

def Y98(**kw):
    """Yang's 1998 substitution model, a derivative of the GY94.
    see Z Yang. Mol. Biol. Evol., 15(5):568-73, 1998"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'Y98',
            predicates = {
                'kappa' : 'transition',
                'omega' : 'replacement',
                },
            mprob_model = 'tuple',
            **kw)
    

def H04G(**kw):
    """Huttley 2004 CpG substitution model. Includes a term for substitutions
    to or from CpG's.
    
    see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'H04G',
            predicates = [_cg, _kappa, _omega],
            mprob_model = 'tuple',
            **kw)
    

def H04GK(**kw):
    """Huttley 2004 CpG substitution model. Includes a term for transition
    substitutions to or from CpG's.
    
    see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'H04GK',
            predicates = [_cg_k, _kappa, _omega],
            mprob_model = 'tuple',
            **kw)
    

def H04GGK(**kw):
    """Huttley 2004 CpG substitution model. Includes a general term for
    substitutions to or from CpG's and an adjustment for CpG transitions.
    
    see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
    return substitution_model.Codon(
            motif_probs = None,
            do_scaling = True,
            model_gaps = False,
            recode_gaps = True,
            name = 'H04GGK',
            predicates = [_cg, _cg_k, _kappa, _omega],
            mprob_model = 'tuple',
            **kw)
    

# Protein Models

# Empirical Protein Models

DSO78_matrix = numpy.array(
    [[  0.00000000e+00,   3.60000000e+01,   1.20000000e+02,   1.98000000e+02,
        1.80000000e+01,   2.40000000e+02,   2.30000000e+01,   6.50000000e+01,
        2.60000000e+01,   4.10000000e+01,   7.20000000e+01,   9.80000000e+01,
        2.50000000e+02,   8.90000000e+01,   2.70000000e+01,   4.09000000e+02,
        3.71000000e+02,   2.08000000e+02,   0.00000000e+00,   2.40000000e+01],
       [  3.60000000e+01,   0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   1.10000000e+01,   2.80000000e+01,   4.40000000e+01,
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        1.90000000e+01,   0.00000000e+00,   2.30000000e+01,   1.61000000e+02,
        1.60000000e+01,   4.90000000e+01,   0.00000000e+00,   9.60000000e+01],
       [  1.20000000e+02,   0.00000000e+00,   0.00000000e+00,   1.15300000e+03,
        0.00000000e+00,   1.25000000e+02,   8.60000000e+01,   2.40000000e+01,
        7.10000000e+01,   0.00000000e+00,   0.00000000e+00,   9.05000000e+02,
        1.30000000e+01,   1.34000000e+02,   0.00000000e+00,   9.50000000e+01,
        6.60000000e+01,   1.80000000e+01,   0.00000000e+00,   0.00000000e+00],
       [  1.98000000e+02,   0.00000000e+00,   1.15300000e+03,   0.00000000e+00,
        0.00000000e+00,   8.10000000e+01,   4.30000000e+01,   6.10000000e+01,
        8.30000000e+01,   1.10000000e+01,   3.00000000e+01,   1.48000000e+02,
        5.10000000e+01,   7.16000000e+02,   1.00000000e+00,   7.90000000e+01,
        3.40000000e+01,   3.70000000e+01,   0.00000000e+00,   2.20000000e+01],
       [  1.80000000e+01,   0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   1.50000000e+01,   4.80000000e+01,   1.96000000e+02,
        0.00000000e+00,   1.57000000e+02,   9.20000000e+01,   1.40000000e+01,
        1.10000000e+01,   0.00000000e+00,   1.40000000e+01,   4.60000000e+01,
        1.30000000e+01,   1.20000000e+01,   7.60000000e+01,   6.98000000e+02],
       [  2.40000000e+02,   1.10000000e+01,   1.25000000e+02,   8.10000000e+01,
        1.50000000e+01,   0.00000000e+00,   1.00000000e+01,   0.00000000e+00,
        2.70000000e+01,   7.00000000e+00,   1.70000000e+01,   1.39000000e+02,
        3.40000000e+01,   2.80000000e+01,   9.00000000e+00,   2.34000000e+02,
        3.00000000e+01,   5.40000000e+01,   0.00000000e+00,   0.00000000e+00],
       [  2.30000000e+01,   2.80000000e+01,   8.60000000e+01,   4.30000000e+01,
        4.80000000e+01,   1.00000000e+01,   0.00000000e+00,   7.00000000e+00,
        2.60000000e+01,   4.40000000e+01,   0.00000000e+00,   5.35000000e+02,
        9.40000000e+01,   6.06000000e+02,   2.40000000e+02,   3.50000000e+01,
        2.20000000e+01,   4.40000000e+01,   2.70000000e+01,   1.27000000e+02],
       [  6.50000000e+01,   4.40000000e+01,   2.40000000e+01,   6.10000000e+01,
        1.96000000e+02,   0.00000000e+00,   7.00000000e+00,   0.00000000e+00,
        4.60000000e+01,   2.57000000e+02,   3.36000000e+02,   7.70000000e+01,
        1.20000000e+01,   1.80000000e+01,   6.40000000e+01,   2.40000000e+01,
        1.92000000e+02,   8.89000000e+02,   0.00000000e+00,   3.70000000e+01],
       [  2.60000000e+01,   0.00000000e+00,   7.10000000e+01,   8.30000000e+01,
        0.00000000e+00,   2.70000000e+01,   2.60000000e+01,   4.60000000e+01,
        0.00000000e+00,   1.80000000e+01,   2.43000000e+02,   3.18000000e+02,
        3.30000000e+01,   1.53000000e+02,   4.64000000e+02,   9.60000000e+01,
        1.36000000e+02,   1.00000000e+01,   0.00000000e+00,   1.30000000e+01],
       [  4.10000000e+01,   0.00000000e+00,   0.00000000e+00,   1.10000000e+01,
        1.57000000e+02,   7.00000000e+00,   4.40000000e+01,   2.57000000e+02,
        1.80000000e+01,   0.00000000e+00,   5.27000000e+02,   3.40000000e+01,
        3.20000000e+01,   7.30000000e+01,   1.50000000e+01,   1.70000000e+01,
        3.30000000e+01,   1.75000000e+02,   4.60000000e+01,   2.80000000e+01],
       [  7.20000000e+01,   0.00000000e+00,   0.00000000e+00,   3.00000000e+01,
        9.20000000e+01,   1.70000000e+01,   0.00000000e+00,   3.36000000e+02,
        2.43000000e+02,   5.27000000e+02,   0.00000000e+00,   1.00000000e+00,
        1.70000000e+01,   1.14000000e+02,   9.00000000e+01,   6.20000000e+01,
        1.04000000e+02,   2.58000000e+02,   0.00000000e+00,   0.00000000e+00],
       [  9.80000000e+01,   0.00000000e+00,   9.05000000e+02,   1.48000000e+02,
        1.40000000e+01,   1.39000000e+02,   5.35000000e+02,   7.70000000e+01,
        3.18000000e+02,   3.40000000e+01,   1.00000000e+00,   0.00000000e+00,
        4.20000000e+01,   1.03000000e+02,   3.20000000e+01,   4.95000000e+02,
        2.29000000e+02,   1.50000000e+01,   2.30000000e+01,   9.50000000e+01],
       [  2.50000000e+02,   1.90000000e+01,   1.30000000e+01,   5.10000000e+01,
        1.10000000e+01,   3.40000000e+01,   9.40000000e+01,   1.20000000e+01,
        3.30000000e+01,   3.20000000e+01,   1.70000000e+01,   4.20000000e+01,
        0.00000000e+00,   1.53000000e+02,   1.03000000e+02,   2.45000000e+02,
        7.80000000e+01,   4.80000000e+01,   0.00000000e+00,   0.00000000e+00],
       [  8.90000000e+01,   0.00000000e+00,   1.34000000e+02,   7.16000000e+02,
        0.00000000e+00,   2.80000000e+01,   6.06000000e+02,   1.80000000e+01,
        1.53000000e+02,   7.30000000e+01,   1.14000000e+02,   1.03000000e+02,
        1.53000000e+02,   0.00000000e+00,   2.46000000e+02,   5.60000000e+01,
        5.30000000e+01,   3.50000000e+01,   0.00000000e+00,   0.00000000e+00],
       [  2.70000000e+01,   2.30000000e+01,   0.00000000e+00,   1.00000000e+00,
        1.40000000e+01,   9.00000000e+00,   2.40000000e+02,   6.40000000e+01,
        4.64000000e+02,   1.50000000e+01,   9.00000000e+01,   3.20000000e+01,
        1.03000000e+02,   2.46000000e+02,   0.00000000e+00,   1.54000000e+02,
        2.60000000e+01,   2.40000000e+01,   2.01000000e+02,   8.00000000e+00],
       [  4.09000000e+02,   1.61000000e+02,   9.50000000e+01,   7.90000000e+01,
        4.60000000e+01,   2.34000000e+02,   3.50000000e+01,   2.40000000e+01,
        9.60000000e+01,   1.70000000e+01,   6.20000000e+01,   4.95000000e+02,
        2.45000000e+02,   5.60000000e+01,   1.54000000e+02,   0.00000000e+00,
        5.50000000e+02,   3.00000000e+01,   7.50000000e+01,   3.40000000e+01],
       [  3.71000000e+02,   1.60000000e+01,   6.60000000e+01,   3.40000000e+01,
        1.30000000e+01,   3.00000000e+01,   2.20000000e+01,   1.92000000e+02,
        1.36000000e+02,   3.30000000e+01,   1.04000000e+02,   2.29000000e+02,
        7.80000000e+01,   5.30000000e+01,   2.60000000e+01,   5.50000000e+02,
        0.00000000e+00,   1.57000000e+02,   0.00000000e+00,   4.20000000e+01],
       [  2.08000000e+02,   4.90000000e+01,   1.80000000e+01,   3.70000000e+01,
        1.20000000e+01,   5.40000000e+01,   4.40000000e+01,   8.89000000e+02,
        1.00000000e+01,   1.75000000e+02,   2.58000000e+02,   1.50000000e+01,
        4.80000000e+01,   3.50000000e+01,   2.40000000e+01,   3.00000000e+01,
        1.57000000e+02,   0.00000000e+00,   0.00000000e+00,   2.80000000e+01],
       [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        7.60000000e+01,   0.00000000e+00,   2.70000000e+01,   0.00000000e+00,
        0.00000000e+00,   4.60000000e+01,   0.00000000e+00,   2.30000000e+01,
        0.00000000e+00,   0.00000000e+00,   2.01000000e+02,   7.50000000e+01,
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,   6.10000000e+01],
       [  2.40000000e+01,   9.60000000e+01,   0.00000000e+00,   2.20000000e+01,
        6.98000000e+02,   0.00000000e+00,   1.27000000e+02,   3.70000000e+01,
        1.30000000e+01,   2.80000000e+01,   0.00000000e+00,   9.50000000e+01,
        0.00000000e+00,   0.00000000e+00,   8.00000000e+00,   3.40000000e+01,
        4.20000000e+01,   2.80000000e+01,   6.10000000e+01,   0.00000000e+00]])

DSO78_freqs = {'A': 0.087126912873087131, 'C': 0.033473966526033475,
         'E': 0.04952995047004953, 'D': 0.046871953128046873,
         'G': 0.088611911388088618, 'F': 0.039771960228039777,
         'I': 0.036885963114036892, 'H': 0.033617966382033626,
         'K': 0.08048191951808048, 'M': 0.014752985247014754,
         'L': 0.085356914643085369, 'N': 0.040431959568040438,
         'Q': 0.038254961745038257, 'P': 0.050679949320050689,
         'S': 0.069576930423069588, 'R': 0.040903959096040908,
         'T': 0.058541941458058543, 'W': 0.010493989506010494,
         'V': 0.064717935282064723, 'Y': 0.029915970084029919}

JTT92_matrix = numpy.array(
        [[   0., 56., 81.,  105., 15.,  179., 27., 36., 35., 30., 54.,
               54.,  194., 57., 58.,  378.,  475.,  298.,  9., 11.],
       [  56.,  0., 10.,  5., 78., 59., 69., 17.,  7., 23., 31.,
               34., 14.,  9.,  113.,  223., 42., 62.,  115.,  209.],
       [  81., 10.,  0.,  767.,  4.,  130.,  112., 11., 26.,  7., 15.,
              528., 15., 49., 16., 59., 38., 31.,  4., 46.],
       [ 105.,  5.,  767.,  0.,  5.,  119., 26., 12.,  181.,  9., 18.,
               58., 18.,  323., 29., 30., 32., 45., 10.,  7.],
       [  15., 78.,  4.,  5.,  0.,  5., 40., 89.,  4.,  248., 43.,
               10., 17.,  4.,  5., 92., 12., 62., 53.,  536.],
       [ 179., 59.,  130.,  119.,  5.,  0., 23.,  6., 27.,  6., 14.,
               81., 24., 26.,  137.,  201., 33., 47., 55.,  8.],
       [  27., 69.,  112., 26., 40., 23.,  0., 16., 45., 56., 33.,
              391.,  115.,  597.,  328., 73., 46., 11.,  8.,  573.],
       [  36., 17., 11., 12., 89.,  6., 16.,  0., 21.,  229.,  479.,
               47., 10.,  9., 22., 40.,  245.,  961.,  9., 32.],
       [  35.,  7., 26.,  181.,  4., 27., 45., 21.,  0., 14., 65.,
              263., 21.,  292.,  646., 47.,  103., 14., 10.,  8.],
       [  30., 23.,  7.,  9.,  248.,  6., 56.,  229., 14.,  0.,  388.,
               12.,  102., 72., 38., 59., 25.,  180., 52., 24.],
       [  54., 31., 15., 18., 43., 14., 33.,  479., 65.,  388.,  0.,
               30., 16., 43., 44., 29.,  226.,  323., 24., 18.],
       [  54., 34.,  528., 58., 10., 81.,  391., 47.,  263., 12., 30.,
                0., 15., 86., 45.,  503.,  232., 16.,  8., 70.],
       [ 194., 14., 15., 18., 17., 24.,  115., 10., 21.,  102., 16.,
               15.,  0.,  164., 74.,  285.,  118., 23.,  6., 10.],
       [  57.,  9., 49.,  323.,  4., 26.,  597.,  9.,  292., 72., 43.,
               86.,  164.,  0.,  310., 53., 51., 20., 18., 24.],
       [  58.,  113., 16., 29.,  5.,  137.,  328., 22.,  646., 38., 44.,
               45., 74.,  310.,  0.,  101., 64., 17.,  126., 20.],
       [ 378.,  223., 59., 30., 92.,  201., 73., 40., 47., 59., 29.,
              503.,  285., 53.,  101.,  0.,  477., 38., 35., 63.],
       [ 475., 42., 38., 32., 12., 33., 46.,  245.,  103., 25.,  226.,
              232.,  118., 51., 64.,  477.,  0.,  112., 12., 21.],
       [ 298., 62., 31., 45., 62., 47., 11.,  961., 14.,  180.,  323.,
               16., 23., 20., 17., 38.,  112.,  0., 25., 16.],
       [   9.,  115.,  4., 10., 53., 55.,  8.,  9., 10., 52., 24.,
                8.,  6., 18.,  126., 35., 12., 25.,  0., 71.],
       [  11.,  209., 46.,  7.,  536.,  8.,  573., 32.,  8., 24., 18.,
               70., 10., 24., 20., 63., 21., 16., 71.,  0.]])

JTT92_freqs = {'A': 0.076747923252076758, 'C': 0.019802980197019805, 'E': 0.061829938170061841, 'D': 0.05154394845605155, 'G': 0.073151926848073159, 'F': 0.040125959874040135, 'I': 0.053760946239053767, 'H': 0.022943977056022944, 'K': 0.058675941324058678, 'M': 0.023825976174023829, 'L': 0.091903908096091905, 'N': 0.042644957355042652, 'Q': 0.040751959248040752, 'P': 0.050900949099050907, 'S': 0.068764931235068771, 'R': 0.051690948309051694, 'T': 0.058564941435058568, 'W': 0.014260985739014262, 'V': 0.066004933995066004, 'Y': 0.032101967898032102}

AH96_matrix = numpy.array(
        [[    0.  , 59.93, 17.67,  9.77,  6.37, 120.71, 13.9 ,
                96.49,  8.36, 25.46, 141.88, 26.95, 54.31,  1.9 ,
                23.18, 387.86, 480.72, 195.06,  1.9 ,  6.48],
       [   59.93,  0.  ,  1.9 ,  1.9 , 70.8 , 30.71, 141.49,
                62.73,  1.9 , 25.65,  6.18, 58.94, 31.26, 75.24,
               103.33, 277.05, 179.97,  1.9 , 33.6 , 254.77],
       [   17.67,  1.9 ,  0.  , 583.55,  4.98, 56.77, 113.99,
                 4.34,  2.31,  1.9 ,  1.9 , 794.38, 13.43, 55.28,
                 1.9 , 69.02, 28.01,  1.9 , 19.86, 21.21],
       [    9.77,  1.9 , 583.55,  0.  ,  2.67, 28.28, 49.12,
                 3.31, 313.86,  1.9 ,  1.9 , 63.05, 12.83, 313.56,
                 1.9 , 54.71, 14.82, 21.14,  1.9 , 13.12],
       [    6.37, 70.8 ,  4.98,  2.67,  0.  ,  1.9 , 48.16,
                84.67,  6.44, 216.06, 90.82, 15.2 , 17.31, 19.11,
                 4.69, 64.29, 33.85,  6.35,  7.84, 465.58],
       [  120.71, 30.71, 56.77, 28.28,  1.9 ,  0.  ,  1.9 ,
                 5.98, 22.73,  2.41,  1.9 , 53.3 ,  1.9 ,  6.75,
                23.03, 125.93, 11.17,  2.53, 10.92,  3.21],
       [   13.9 , 141.49, 113.99, 49.12, 48.16,  1.9 ,  0.  ,
                12.26, 127.67, 11.49, 11.97, 496.13, 60.97, 582.4 ,
               165.23, 77.46, 44.78,  1.9 ,  7.08, 670.14],
       [   96.49, 62.73,  4.34,  3.31, 84.67,  5.98, 12.26,
                 0.  , 19.57, 329.09, 517.98, 27.1 , 20.63,  8.34,
                 1.9 , 47.7 , 368.43, 1222.94,  1.9 , 25.01],
       [    8.36,  1.9 ,  2.31, 313.86,  6.44, 22.73, 127.67,
                19.57,  0.  , 14.88, 91.37, 608.7 , 50.1 , 465.58,
               141.4 , 105.79, 136.33,  1.9 , 24.  , 51.17],
       [   25.46, 25.65,  1.9 ,  1.9 , 216.06,  2.41, 11.49,
               329.09, 14.88,  0.  , 537.53, 15.16, 40.1 , 39.7 ,
                15.58, 73.61, 126.4 , 91.67, 32.44, 44.15],
       [  141.88,  6.18,  1.9 ,  1.9 , 90.82,  1.9 , 11.97,
               517.98, 91.37, 537.53,  0.  , 65.41, 18.84, 47.37,
                 1.9 , 111.16, 528.17, 387.54, 21.71, 39.96],
       [   26.95, 58.94, 794.38, 63.05, 15.2 , 53.3 , 496.13,
                27.1 , 608.7 , 15.16, 65.41,  0.  , 73.31, 173.56,
                13.24, 494.39, 238.46,  1.9 , 10.68, 191.36],
       [   54.31, 31.26, 13.43, 12.83, 17.31,  1.9 , 60.97,
                20.63, 50.1 , 40.1 , 18.84, 73.31,  0.  , 137.29,
                23.64, 169.9 , 128.22,  8.23,  4.21, 16.21],
       [    1.9 , 75.24, 55.28, 313.56, 19.11,  6.75, 582.4 ,
                 8.34, 465.58, 39.7 , 47.37, 173.56, 137.29,  0.  ,
               220.99, 54.11, 94.93, 19.  ,  1.9 , 38.82],
       [   23.18, 103.33,  1.9 ,  1.9 ,  4.69, 23.03, 165.23,
                 1.9 , 141.4 , 15.58,  1.9 , 13.24, 23.64, 220.99,
                 0.  ,  6.04,  2.08,  7.64, 21.95,  1.9 ],
       [  387.86, 277.05, 69.02, 54.71, 64.29, 125.93, 77.46,
                47.7 , 105.79, 73.61, 111.16, 494.39, 169.9 , 54.11,
                 6.04,  0.  , 597.21,  1.9 , 38.58, 64.92],
       [  480.72, 179.97, 28.01, 14.82, 33.85, 11.17, 44.78,
               368.43, 136.33, 126.4 , 528.17, 238.46, 128.22, 94.93,
                 2.08, 597.21,  0.  , 204.54,  9.99, 38.73],
       [  195.06,  1.9 ,  1.9 , 21.14,  6.35,  2.53,  1.9 ,
              1222.94,  1.9 , 91.67, 387.54,  1.9 ,  8.23, 19.  ,
                 7.64,  1.9 , 204.54,  0.  ,  5.37,  1.9 ],
       [    1.9 , 33.6 , 19.86,  1.9 ,  7.84, 10.92,  7.08,
                 1.9 , 24.  , 32.44, 21.71, 10.68,  4.21,  1.9 ,
                21.95, 38.58,  9.99,  5.37,  0.  , 26.25],
       [    6.48, 254.77, 21.21, 13.12, 465.58,  3.21, 670.14,
                25.01, 51.17, 44.15, 39.96, 191.36, 16.21, 38.82,
                 1.9 , 64.92, 38.73,  1.9 , 26.25,  0.  ]])

AH96_freqs = {
            'A': 0.071999999999999995, 'C': 0.0060000000000000001, 'E': 0.024, 'D': 0.019, 'G': 0.056000000000000001, 'F': 0.060999999999999999, 'I': 0.087999999999999995, 'H': 0.028000000000000001, 'K': 0.023, 'M': 0.053999999999999999, 'L': 0.16900000000000001, 'N': 0.039, 'Q': 0.025000000000000001, 'P': 0.053999999999999999, 'S': 0.071999999999999995, 'R': 0.019, 'T': 0.085999999999999993, 'W': 0.029000000000000001, 'V': 0.042999999999999997, 'Y': 0.033000000000000002}

AH96_mtmammals_matrix = numpy.array(
        [[ 0.00000000e+00, 0.00000000e+00, 1.10000000e+01, 0.00000000e+00,
               0.00000000e+00, 7.80000000e+01, 8.00000000e+00, 7.50000000e+01,
               0.00000000e+00, 2.10000000e+01, 7.60000000e+01, 2.00000000e+00,
               5.30000000e+01, 0.00000000e+00, 3.20000000e+01, 3.42000000e+02,
               6.81000000e+02, 3.98000000e+02, 5.00000000e+00, 0.00000000e+00],
       [  0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               7.00000000e+00, 0.00000000e+00, 3.05000000e+02, 4.10000000e+01,
               0.00000000e+00, 2.70000000e+01, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 1.86000000e+02, 3.47000000e+02,
               1.14000000e+02, 0.00000000e+00, 6.50000000e+01, 5.30000000e+02],
       [  1.10000000e+01, 0.00000000e+00, 0.00000000e+00, 5.69000000e+02,
               5.00000000e+00, 7.90000000e+01, 1.10000000e+01, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.64000000e+02,
               2.00000000e+00, 4.90000000e+01, 0.00000000e+00, 1.60000000e+01,
               0.00000000e+00, 1.00000000e+01, 0.00000000e+00, 0.00000000e+00],
       [  0.00000000e+00, 0.00000000e+00, 5.69000000e+02, 0.00000000e+00,
               0.00000000e+00, 2.20000000e+01, 2.20000000e+01, 0.00000000e+00,
               2.15000000e+02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 2.74000000e+02, 0.00000000e+00, 2.10000000e+01,
               4.00000000e+00, 2.00000000e+01, 0.00000000e+00, 0.00000000e+00],
       [  0.00000000e+00, 7.00000000e+00, 5.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.70000000e+01,
               0.00000000e+00, 2.46000000e+02, 1.10000000e+01, 6.00000000e+00,
               1.70000000e+01, 0.00000000e+00, 0.00000000e+00, 9.00000000e+01,
               8.00000000e+00, 6.00000000e+00, 0.00000000e+00, 6.82000000e+02],
       [  7.80000000e+01, 0.00000000e+00, 7.90000000e+01, 2.20000000e+01,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.70000000e+01,
               0.00000000e+00, 0.00000000e+00, 1.80000000e+01, 1.12000000e+02,
               0.00000000e+00, 5.00000000e+00, 0.00000000e+00, 1.00000000e+00],
       [  8.00000000e+00, 3.05000000e+02, 1.10000000e+01, 2.20000000e+01,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 2.60000000e+01, 0.00000000e+00, 4.58000000e+02,
               5.30000000e+01, 5.50000000e+02, 2.32000000e+02, 2.00000000e+01,
               1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.52500000e+03],
       [  7.50000000e+01, 4.10000000e+01, 0.00000000e+00, 0.00000000e+00,
               5.70000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               6.00000000e+00, 2.32000000e+02, 3.78000000e+02, 1.90000000e+01,
               5.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               3.60000000e+02, 2.22000000e+03, 0.00000000e+00, 1.60000000e+01],
       [  0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.15000000e+02,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 6.00000000e+00,
               0.00000000e+00, 4.00000000e+00, 5.90000000e+01, 4.08000000e+02,
               1.80000000e+01, 2.42000000e+02, 5.00000000e+01, 6.50000000e+01,
               5.00000000e+01, 0.00000000e+00, 0.00000000e+00, 6.70000000e+01],
       [  2.10000000e+01, 2.70000000e+01, 0.00000000e+00, 0.00000000e+00,
               2.46000000e+02, 0.00000000e+00, 2.60000000e+01, 2.32000000e+02,
               4.00000000e+00, 0.00000000e+00, 6.09000000e+02, 0.00000000e+00,
               4.30000000e+01, 2.00000000e+01, 6.00000000e+00, 7.40000000e+01,
               3.40000000e+01, 1.00000000e+02, 1.20000000e+01, 2.50000000e+01],
       [  7.60000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               1.10000000e+01, 0.00000000e+00, 0.00000000e+00, 3.78000000e+02,
               5.90000000e+01, 6.09000000e+02, 0.00000000e+00, 2.10000000e+01,
               0.00000000e+00, 2.20000000e+01, 0.00000000e+00, 4.70000000e+01,
               6.91000000e+02, 8.32000000e+02, 1.30000000e+01, 0.00000000e+00],
       [  2.00000000e+00, 0.00000000e+00, 8.64000000e+02, 0.00000000e+00,
               6.00000000e+00, 4.70000000e+01, 4.58000000e+02, 1.90000000e+01,
               4.08000000e+02, 0.00000000e+00, 2.10000000e+01, 0.00000000e+00,
               3.30000000e+01, 8.00000000e+00, 4.00000000e+00, 4.46000000e+02,
               1.10000000e+02, 0.00000000e+00, 6.00000000e+00, 1.56000000e+02],
       [  5.30000000e+01, 0.00000000e+00, 2.00000000e+00, 0.00000000e+00,
               1.70000000e+01, 0.00000000e+00, 5.30000000e+01, 5.00000000e+00,
               1.80000000e+01, 4.30000000e+01, 0.00000000e+00, 3.30000000e+01,
               0.00000000e+00, 5.10000000e+01, 9.00000000e+00, 2.02000000e+02,
               7.80000000e+01, 0.00000000e+00, 7.00000000e+00, 8.00000000e+00],
       [  0.00000000e+00, 0.00000000e+00, 4.90000000e+01, 2.74000000e+02,
               0.00000000e+00, 0.00000000e+00, 5.50000000e+02, 0.00000000e+00,
               2.42000000e+02, 2.00000000e+01, 2.20000000e+01, 8.00000000e+00,
               5.10000000e+01, 0.00000000e+00, 2.46000000e+02, 3.00000000e+01,
               0.00000000e+00, 3.30000000e+01, 0.00000000e+00, 5.40000000e+01],
       [  3.20000000e+01, 1.86000000e+02, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 1.80000000e+01, 2.32000000e+02, 0.00000000e+00,
               5.00000000e+01, 6.00000000e+00, 0.00000000e+00, 4.00000000e+00,
               9.00000000e+00, 2.46000000e+02, 0.00000000e+00, 3.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 1.60000000e+01, 0.00000000e+00],
       [  3.42000000e+02, 3.47000000e+02, 1.60000000e+01, 2.10000000e+01,
               9.00000000e+01, 1.12000000e+02, 2.00000000e+01, 0.00000000e+00,
               6.50000000e+01, 7.40000000e+01, 4.70000000e+01, 4.46000000e+02,
               2.02000000e+02, 3.00000000e+01, 3.00000000e+00, 0.00000000e+00,
               6.14000000e+02, 0.00000000e+00, 1.70000000e+01, 1.07000000e+02],
       [  6.81000000e+02, 1.14000000e+02, 0.00000000e+00, 4.00000000e+00,
               8.00000000e+00, 0.00000000e+00, 1.00000000e+00, 3.60000000e+02,
               5.00000000e+01, 3.40000000e+01, 6.91000000e+02, 1.10000000e+02,
               7.80000000e+01, 0.00000000e+00, 0.00000000e+00, 6.14000000e+02,
               0.00000000e+00, 2.37000000e+02, 0.00000000e+00, 0.00000000e+00],
       [  3.98000000e+02, 0.00000000e+00, 1.00000000e+01, 2.00000000e+01,
               6.00000000e+00, 5.00000000e+00, 0.00000000e+00, 2.22000000e+03,
               0.00000000e+00, 1.00000000e+02, 8.32000000e+02, 0.00000000e+00,
               0.00000000e+00, 3.30000000e+01, 0.00000000e+00, 0.00000000e+00,
               2.37000000e+02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [  5.00000000e+00, 6.50000000e+01, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 1.20000000e+01, 1.30000000e+01, 6.00000000e+00,
               7.00000000e+00, 0.00000000e+00, 1.60000000e+01, 1.70000000e+01,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.40000000e+01],
       [  0.00000000e+00, 5.30000000e+02, 0.00000000e+00, 0.00000000e+00,
               6.82000000e+02, 1.00000000e+00, 1.52500000e+03, 1.60000000e+01,
               6.70000000e+01, 2.50000000e+01, 0.00000000e+00, 1.56000000e+02,
               8.00000000e+00, 5.40000000e+01, 0.00000000e+00, 1.07000000e+02,
               0.00000000e+00, 0.00000000e+00, 1.40000000e+01, 0.00000000e+00]])
               
AH96_mtmammals_freqs = {
            'A': 0.069199999999999998, 'C': 0.0064999999999999997,
            'E': 0.023599999999999999, 'D': 0.018599999999999998,
            'G': 0.0557, 'F': 0.061100000000000002,
            'I': 0.090499999999999997, 'H': 0.027699999999999999,
            'K': 0.022100000000000002, 'M': 0.056099999999999997,
            'L': 0.16750000000000001, 'N': 0.040000000000000001,
            'Q': 0.023800000000000002, 'P': 0.053600000000000002,
            'S': 0.072499999999999995, 'R': 0.0184,
            'T': 0.086999999999999994, 'W': 0.0293,
            'V': 0.042799999999999998, 'Y': 0.034000000000000002}
            
WG01_matrix = numpy.array(
        [[ 0.      , 1.02704 , 0.738998, 1.58285 , 0.210494, 1.41672 ,
              0.316954, 0.193335, 0.906265, 0.397915, 0.893496, 0.509848,
              1.43855 , 0.908598, 0.551571, 3.37079 , 2.12111 , 2.00601 ,
              0.113133, 0.240735 ],
       [ 1.02704 , 0.      , 0.0302949, 0.021352, 0.39802 , 0.306674,
              0.248972, 0.170135, 0.0740339, 0.384287, 0.390482, 0.265256,
              0.109404, 0.0988179, 0.528191, 1.40766 , 0.512984, 1.00214 ,
              0.71707 , 0.543833 ],
       [ 0.738998, 0.0302949, 0.      , 6.17416 , 0.0467304, 0.865584,
              0.930676, 0.039437, 0.479855, 0.0848047, 0.103754, 5.42942 ,
              0.423984, 0.616783, 0.147304, 1.07176 , 0.374866, 0.152335,
              0.129767, 0.325711 ],
       [ 1.58285 , 0.021352, 6.17416 , 0.      , 0.0811339, 0.567717,
              0.570025, 0.127395, 2.58443 , 0.154263, 0.315124, 0.947198,
              0.682355, 5.46947 , 0.439157, 0.704939, 0.822765, 0.588731,
              0.156557, 0.196303 ],
       [ 0.210494, 0.39802 , 0.0467304, 0.0811339, 0.      , 0.049931,
              0.679371, 1.05947 , 0.088836, 2.11517 , 1.19063 , 0.0961621,
              0.161444, 0.0999208, 0.102711, 0.545931, 0.171903, 0.649892,
              1.52964 , 6.45428  ],
       [ 1.41672 , 0.306674, 0.865584, 0.567717, 0.049931, 0.      ,
              0.24941 , 0.0304501, 0.373558, 0.0613037, 0.1741  , 1.12556 ,
              0.24357 , 0.330052, 0.584665, 1.34182 , 0.225833, 0.187247,
              0.336983, 0.103604 ],
       [ 0.316954, 0.248972, 0.930676, 0.570025, 0.679371, 0.24941 ,
              0.      , 0.13819 , 0.890432, 0.499462, 0.404141, 3.95629 ,
              0.696198, 4.29411 , 2.13715 , 0.740169, 0.473307, 0.118358,
              0.262569, 3.87344  ],
       [ 0.193335, 0.170135, 0.039437, 0.127395, 1.05947 , 0.0304501,
              0.13819 , 0.      , 0.323832, 3.17097 , 4.25746 , 0.554236,
              0.0999288, 0.113917, 0.186979, 0.31944 , 1.45816 , 7.8213  ,
              0.212483, 0.42017  ],
       [ 0.906265, 0.0740339, 0.479855, 2.58443 , 0.088836, 0.373558,
              0.890432, 0.323832, 0.      , 0.257555, 0.934276, 3.01201 ,
              0.556896, 3.8949  , 5.35142 , 0.96713 , 1.38698 , 0.305434,
              0.137505, 0.133264 ],
       [ 0.397915, 0.384287, 0.0848047, 0.154263, 2.11517 , 0.0613037,
              0.499462, 3.17097 , 0.257555, 0.      , 4.85402 , 0.131528,
              0.415844, 0.869489, 0.497671, 0.344739, 0.326622, 1.80034 ,
              0.665309, 0.398618 ],
       [ 0.893496, 0.390482, 0.103754, 0.315124, 1.19063 , 0.1741  ,
              0.404141, 4.25746 , 0.934276, 4.85402 , 0.      , 0.198221,
              0.171329, 1.54526 , 0.683162, 0.493905, 1.51612 , 2.05845 ,
              0.515706, 0.428437 ],
       [ 0.509848, 0.265256, 5.42942 , 0.947198, 0.0961621, 1.12556 ,
              3.95629 , 0.554236, 3.01201 , 0.131528, 0.198221, 0.      ,
              0.195081, 1.54364 , 0.635346, 3.97423 , 2.03006 , 0.196246,
              0.0719167, 1.086    ],
       [ 1.43855 , 0.109404, 0.423984, 0.682355, 0.161444, 0.24357 ,
              0.696198, 0.0999288, 0.556896, 0.415844, 0.171329, 0.195081,
              0.      , 0.933372, 0.679489, 1.61328 , 0.795384, 0.314887,
              0.139405, 0.216046 ],
       [ 0.908598, 0.0988179, 0.616783, 5.46947 , 0.0999208, 0.330052,
              4.29411 , 0.113917, 3.8949  , 0.869489, 1.54526 , 1.54364 ,
              0.933372, 0.      , 3.0355  , 1.02887 , 0.857928, 0.301281,
              0.215737, 0.22771  ],
       [ 0.551571, 0.528191, 0.147304, 0.439157, 0.102711, 0.584665,
              2.13715 , 0.186979, 5.35142 , 0.497671, 0.683162, 0.635346,
              0.679489, 3.0355  , 0.      , 1.22419 , 0.554413, 0.251849,
              1.16392 , 0.381533 ],
       [ 3.37079 , 1.40766 , 1.07176 , 0.704939, 0.545931, 1.34182 ,
              0.740169, 0.31944 , 0.96713 , 0.344739, 0.493905, 3.97423 ,
              1.61328 , 1.02887 , 1.22419 , 0.      , 4.37802 , 0.232739,
              0.523742, 0.786993 ],
       [ 2.12111 , 0.512984, 0.374866, 0.822765, 0.171903, 0.225833,
              0.473307, 1.45816 , 1.38698 , 0.326622, 1.51612 , 2.03006 ,
              0.795384, 0.857928, 0.554413, 4.37802 , 0.      , 1.38823 ,
              0.110864, 0.291148 ],
       [ 2.00601 , 1.00214 , 0.152335, 0.588731, 0.649892, 0.187247,
              0.118358, 7.8213  , 0.305434, 1.80034 , 2.05845 , 0.196246,
              0.314887, 0.301281, 0.251849, 0.232739, 1.38823 , 0.      ,
              0.365369, 0.31473  ],
       [ 0.113133, 0.71707 , 0.129767, 0.156557, 1.52964 , 0.336983,
              0.262569, 0.212483, 0.137505, 0.665309, 0.515706, 0.0719167,
              0.139405, 0.215737, 1.16392 , 0.523742, 0.110864, 0.365369,
              0.      , 2.48539  ],
       [ 0.240735, 0.543833, 0.325711, 0.196303, 6.45428 , 0.103604,
              3.87344 , 0.42017 , 0.133264, 0.398618, 0.428437, 1.086   ,
              0.216046, 0.22771 , 0.381533, 0.786993, 0.291148, 0.31473 ,
              2.48539 , 0.       ]])

WG01_freqs = {
            'A': 0.086627908662790867, 'C': 0.019307801930780195,
            'E': 0.058058905805890577, 'D': 0.057045105704510574,
            'G': 0.083251808325180837, 'F': 0.038431903843190382,
            'I': 0.048466004846600491, 'H': 0.024431302443130246,
            'K': 0.062028606202860624, 'M': 0.019502701950270197,
            'L': 0.086209008620900862, 'N': 0.039089403908940397,
            'Q': 0.036728103672810368, 'P': 0.045763104576310464,
            'S': 0.069517906951790692, 'R': 0.043972004397200441,
            'T': 0.061012706101270617, 'W': 0.014385901438590145,
            'V': 0.070895607089560719, 'Y': 0.035274203527420354}

def DSO78(**kw):
    """Dayhoff et al 1978 empirical protein model
    Dayhoff, MO, Schwartz RM, and Orcutt, BC. 1978
    A model of evolutionary change in proteins. Pp. 345-352.
    Atlas of protein sequence and structure, Vol 5, Suppl. 3.
    National Biomedical Research Foundation,  Washington D. C
    Matrix imported from PAML dayhoff.dat file"""
    sm = substitution_model.EmpiricalProteinMatrix(
                    DSO78_matrix, DSO78_freqs, name='DSO78', **kw)
                        
    return sm
    
def JTT92(**kw):
    """Jones, Taylor and Thornton 1992 empirical protein model
    Jones DT, Taylor WR, Thornton JM.
    The rapid generation of mutation data matrices from protein sequences.
    Comput Appl Biosci. 1992 Jun;8(3):275-82.
    Matrix imported from PAML jones.dat file"""
    sm = substitution_model.EmpiricalProteinMatrix(
                    JTT92_matrix, JTT92_freqs, name='JTT92', **kw)
                        
    return sm
    
def AH96(**kw):
    """Adachi and Hasegawa 1996 empirical model for mitochondrial proteins.
    Adachi J, Hasegawa M.
    Model of amino acid substitution in proteins encoded by mitochondrial DNA.
    J Mol Evol. 1996 Apr;42(4):459-68.
    Matrix imported from PAML mtREV24.dat file"""
    sm = substitution_model.EmpiricalProteinMatrix(
                    AH96_matrix,
                    AH96_freqs,
                    name='AH96_mtREV24',
                    **kw)
                        
    return sm
    
def mtREV(**kw):
    return AH96(**kw)

def AH96_mtmammals(**kw):
    """Adachi and Hasegawa 1996 empirical model for mammalian mitochondrial
    proteins.
    Adachi J, Hasegawa M.
    Model of amino acid substitution in proteins encoded by mitochondrial DNA.
    J Mol Evol. 1996 Apr;42(4):459-68.
    Matrix imported from PAML mtmam.dat file"""
    sm = substitution_model.EmpiricalProteinMatrix(
                    AH96_mtmammals_matrix,
                    AH96_mtmammals_freqs,
                    name='AH96_mtmammals',
                    **kw)
    
    return sm
    
def mtmam(**kw):
    return AH96_mtmammals(**kw)
    
def WG01(**kw):
    """Whelan and Goldman 2001 empirical model for globular proteins.
    Whelan S, Goldman N.
    A general empirical model of protein evolution derived from multiple protein
    families using a maximum-likelihood approach.
    Mol Biol Evol. 2001 May;18(5):691-9.
    Matrix imported from PAML wag.dat file"""
    sm = substitution_model.EmpiricalProteinMatrix(
                    WG01_matrix,
                    WG01_freqs,
                    name='WG01',
                    **kw)
                    
    return sm