/usr/share/pyshared/cogent/evolve/models.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 | #! /usr/bin/env python
"""A collection of pre-defined models. These are provided for convenience so that
users do not need to keep reconstructing the standard models. We encourage users
to think about the assumptions in these models and consider if their problem could
benefit from a user defined model.
Note that models that do not traditionally deal with gaps are implemented with
gap recoding that will convert gaps to Ns, and model gaps set to False."""
#The models are constructed in a strait forward manner with no attempt to condense
#this file using functions etc. to allow each model to serve as an example for users
#wishing to construct their own models
import numpy
from cogent.evolve import substitution_model
from cogent.evolve.predicate import MotifChange, replacement
from cogent.evolve.solved_models import F81, HKY85, TN93
__author__ = "Matthew Wakefield"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Matthew Wakefield", "Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Matthew Wakefield"
__email__ = "wakefield@wehi.edu.au"
__status__ = "Production"
nucleotide_models = ['JC69','K80', 'F81','HKY85', 'TN93', 'GTR']
codon_models = ['CNFGTR', 'CNFHKY', 'MG94HKY', 'MG94GTR', 'GY94', 'H04G', 'H04GK', 'H04GGK']
protein_models = [ 'DSO78', 'AH96', 'AH96_mtmammals', 'JTT92', 'WG01']
# Substitution model rate matrix predicates
_gtr_preds = [MotifChange(x,y) for x,y in ['AC', 'AG', 'AT', 'CG', 'CT']]
_kappa = (~MotifChange('R','Y')).aliased('kappa')
_omega = replacement.aliased('omega')
_cg = MotifChange('CG').aliased('G')
_cg_k = (_cg & _kappa).aliased('G.K')
def K80(**kw):
"""Kimura 1980"""
return HKY85(equal_motif_probs=True, optimise_motif_probs=False, **kw)
def JC69(**kw):
"""Jukes and Cantor's 1969 model"""
return F81(equal_motif_probs=True, optimise_motif_probs=False, **kw)
def GTR(**kw):
"""General Time Reversible nucleotide substitution model."""
return substitution_model.Nucleotide(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'GTR',
predicates = _gtr_preds,
**kw)
# Codon Models
def CNFGTR(**kw):
"""Conditional nucleotide frequency codon substitution model, GTR variant
(with params analagous to the nucleotide GTR model).
See Yap, Lindsay, Easteal and Huttley, Mol Biol Evol, In press."""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'CNFGTR',
predicates = _gtr_preds+[_omega],
mprob_model='conditional',
**kw)
def CNFHKY(**kw):
"""Conditional nucleotide frequency codon substitution model, HKY variant
(with kappa, the ratio of transitions to transversions)
See Yap, Lindsay, Easteal and Huttley, Mol Biol Evol, In press."""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'CNFHKY',
predicates = [_kappa, _omega],
mprob_model='conditional',
**kw)
def MG94HKY(**kw):
"""Muse and Gaut 1994 codon substitution model, HKY variant (with kappa,
the ratio of transitions to transversions)
see, Muse and Gaut, 1994, Mol Biol Evol, 11, 715-24"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'MG94',
predicates = [_kappa, _omega],
mprob_model='monomer',
**kw)
def MG94GTR(**kw):
"""Muse and Gaut 1994 codon substitution model, GTR variant (with params
analagous to the nucleotide GTR model)
see, Muse and Gaut, 1994, Mol Biol Evol, 11, 715-24"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'MG94',
predicates = _gtr_preds+[_omega],
mprob_model='monomer',
**kw)
def GY94(**kw):
"""Goldman and Yang 1994 codon substitution model.
see, N Goldman and Z Yang, Mol. Biol. Evol., 11(5):725-36, 1994."""
return Y98(**kw)
def Y98(**kw):
"""Yang's 1998 substitution model, a derivative of the GY94.
see Z Yang. Mol. Biol. Evol., 15(5):568-73, 1998"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'Y98',
predicates = {
'kappa' : 'transition',
'omega' : 'replacement',
},
mprob_model = 'tuple',
**kw)
def H04G(**kw):
"""Huttley 2004 CpG substitution model. Includes a term for substitutions
to or from CpG's.
see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'H04G',
predicates = [_cg, _kappa, _omega],
mprob_model = 'tuple',
**kw)
def H04GK(**kw):
"""Huttley 2004 CpG substitution model. Includes a term for transition
substitutions to or from CpG's.
see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'H04GK',
predicates = [_cg_k, _kappa, _omega],
mprob_model = 'tuple',
**kw)
def H04GGK(**kw):
"""Huttley 2004 CpG substitution model. Includes a general term for
substitutions to or from CpG's and an adjustment for CpG transitions.
see, GA Huttley. Mol Biol Evol, 21(9):1760-8"""
return substitution_model.Codon(
motif_probs = None,
do_scaling = True,
model_gaps = False,
recode_gaps = True,
name = 'H04GGK',
predicates = [_cg, _cg_k, _kappa, _omega],
mprob_model = 'tuple',
**kw)
# Protein Models
# Empirical Protein Models
DSO78_matrix = numpy.array(
[[ 0.00000000e+00, 3.60000000e+01, 1.20000000e+02, 1.98000000e+02,
1.80000000e+01, 2.40000000e+02, 2.30000000e+01, 6.50000000e+01,
2.60000000e+01, 4.10000000e+01, 7.20000000e+01, 9.80000000e+01,
2.50000000e+02, 8.90000000e+01, 2.70000000e+01, 4.09000000e+02,
3.71000000e+02, 2.08000000e+02, 0.00000000e+00, 2.40000000e+01],
[ 3.60000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.10000000e+01, 2.80000000e+01, 4.40000000e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.90000000e+01, 0.00000000e+00, 2.30000000e+01, 1.61000000e+02,
1.60000000e+01, 4.90000000e+01, 0.00000000e+00, 9.60000000e+01],
[ 1.20000000e+02, 0.00000000e+00, 0.00000000e+00, 1.15300000e+03,
0.00000000e+00, 1.25000000e+02, 8.60000000e+01, 2.40000000e+01,
7.10000000e+01, 0.00000000e+00, 0.00000000e+00, 9.05000000e+02,
1.30000000e+01, 1.34000000e+02, 0.00000000e+00, 9.50000000e+01,
6.60000000e+01, 1.80000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 1.98000000e+02, 0.00000000e+00, 1.15300000e+03, 0.00000000e+00,
0.00000000e+00, 8.10000000e+01, 4.30000000e+01, 6.10000000e+01,
8.30000000e+01, 1.10000000e+01, 3.00000000e+01, 1.48000000e+02,
5.10000000e+01, 7.16000000e+02, 1.00000000e+00, 7.90000000e+01,
3.40000000e+01, 3.70000000e+01, 0.00000000e+00, 2.20000000e+01],
[ 1.80000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.50000000e+01, 4.80000000e+01, 1.96000000e+02,
0.00000000e+00, 1.57000000e+02, 9.20000000e+01, 1.40000000e+01,
1.10000000e+01, 0.00000000e+00, 1.40000000e+01, 4.60000000e+01,
1.30000000e+01, 1.20000000e+01, 7.60000000e+01, 6.98000000e+02],
[ 2.40000000e+02, 1.10000000e+01, 1.25000000e+02, 8.10000000e+01,
1.50000000e+01, 0.00000000e+00, 1.00000000e+01, 0.00000000e+00,
2.70000000e+01, 7.00000000e+00, 1.70000000e+01, 1.39000000e+02,
3.40000000e+01, 2.80000000e+01, 9.00000000e+00, 2.34000000e+02,
3.00000000e+01, 5.40000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 2.30000000e+01, 2.80000000e+01, 8.60000000e+01, 4.30000000e+01,
4.80000000e+01, 1.00000000e+01, 0.00000000e+00, 7.00000000e+00,
2.60000000e+01, 4.40000000e+01, 0.00000000e+00, 5.35000000e+02,
9.40000000e+01, 6.06000000e+02, 2.40000000e+02, 3.50000000e+01,
2.20000000e+01, 4.40000000e+01, 2.70000000e+01, 1.27000000e+02],
[ 6.50000000e+01, 4.40000000e+01, 2.40000000e+01, 6.10000000e+01,
1.96000000e+02, 0.00000000e+00, 7.00000000e+00, 0.00000000e+00,
4.60000000e+01, 2.57000000e+02, 3.36000000e+02, 7.70000000e+01,
1.20000000e+01, 1.80000000e+01, 6.40000000e+01, 2.40000000e+01,
1.92000000e+02, 8.89000000e+02, 0.00000000e+00, 3.70000000e+01],
[ 2.60000000e+01, 0.00000000e+00, 7.10000000e+01, 8.30000000e+01,
0.00000000e+00, 2.70000000e+01, 2.60000000e+01, 4.60000000e+01,
0.00000000e+00, 1.80000000e+01, 2.43000000e+02, 3.18000000e+02,
3.30000000e+01, 1.53000000e+02, 4.64000000e+02, 9.60000000e+01,
1.36000000e+02, 1.00000000e+01, 0.00000000e+00, 1.30000000e+01],
[ 4.10000000e+01, 0.00000000e+00, 0.00000000e+00, 1.10000000e+01,
1.57000000e+02, 7.00000000e+00, 4.40000000e+01, 2.57000000e+02,
1.80000000e+01, 0.00000000e+00, 5.27000000e+02, 3.40000000e+01,
3.20000000e+01, 7.30000000e+01, 1.50000000e+01, 1.70000000e+01,
3.30000000e+01, 1.75000000e+02, 4.60000000e+01, 2.80000000e+01],
[ 7.20000000e+01, 0.00000000e+00, 0.00000000e+00, 3.00000000e+01,
9.20000000e+01, 1.70000000e+01, 0.00000000e+00, 3.36000000e+02,
2.43000000e+02, 5.27000000e+02, 0.00000000e+00, 1.00000000e+00,
1.70000000e+01, 1.14000000e+02, 9.00000000e+01, 6.20000000e+01,
1.04000000e+02, 2.58000000e+02, 0.00000000e+00, 0.00000000e+00],
[ 9.80000000e+01, 0.00000000e+00, 9.05000000e+02, 1.48000000e+02,
1.40000000e+01, 1.39000000e+02, 5.35000000e+02, 7.70000000e+01,
3.18000000e+02, 3.40000000e+01, 1.00000000e+00, 0.00000000e+00,
4.20000000e+01, 1.03000000e+02, 3.20000000e+01, 4.95000000e+02,
2.29000000e+02, 1.50000000e+01, 2.30000000e+01, 9.50000000e+01],
[ 2.50000000e+02, 1.90000000e+01, 1.30000000e+01, 5.10000000e+01,
1.10000000e+01, 3.40000000e+01, 9.40000000e+01, 1.20000000e+01,
3.30000000e+01, 3.20000000e+01, 1.70000000e+01, 4.20000000e+01,
0.00000000e+00, 1.53000000e+02, 1.03000000e+02, 2.45000000e+02,
7.80000000e+01, 4.80000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 8.90000000e+01, 0.00000000e+00, 1.34000000e+02, 7.16000000e+02,
0.00000000e+00, 2.80000000e+01, 6.06000000e+02, 1.80000000e+01,
1.53000000e+02, 7.30000000e+01, 1.14000000e+02, 1.03000000e+02,
1.53000000e+02, 0.00000000e+00, 2.46000000e+02, 5.60000000e+01,
5.30000000e+01, 3.50000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 2.70000000e+01, 2.30000000e+01, 0.00000000e+00, 1.00000000e+00,
1.40000000e+01, 9.00000000e+00, 2.40000000e+02, 6.40000000e+01,
4.64000000e+02, 1.50000000e+01, 9.00000000e+01, 3.20000000e+01,
1.03000000e+02, 2.46000000e+02, 0.00000000e+00, 1.54000000e+02,
2.60000000e+01, 2.40000000e+01, 2.01000000e+02, 8.00000000e+00],
[ 4.09000000e+02, 1.61000000e+02, 9.50000000e+01, 7.90000000e+01,
4.60000000e+01, 2.34000000e+02, 3.50000000e+01, 2.40000000e+01,
9.60000000e+01, 1.70000000e+01, 6.20000000e+01, 4.95000000e+02,
2.45000000e+02, 5.60000000e+01, 1.54000000e+02, 0.00000000e+00,
5.50000000e+02, 3.00000000e+01, 7.50000000e+01, 3.40000000e+01],
[ 3.71000000e+02, 1.60000000e+01, 6.60000000e+01, 3.40000000e+01,
1.30000000e+01, 3.00000000e+01, 2.20000000e+01, 1.92000000e+02,
1.36000000e+02, 3.30000000e+01, 1.04000000e+02, 2.29000000e+02,
7.80000000e+01, 5.30000000e+01, 2.60000000e+01, 5.50000000e+02,
0.00000000e+00, 1.57000000e+02, 0.00000000e+00, 4.20000000e+01],
[ 2.08000000e+02, 4.90000000e+01, 1.80000000e+01, 3.70000000e+01,
1.20000000e+01, 5.40000000e+01, 4.40000000e+01, 8.89000000e+02,
1.00000000e+01, 1.75000000e+02, 2.58000000e+02, 1.50000000e+01,
4.80000000e+01, 3.50000000e+01, 2.40000000e+01, 3.00000000e+01,
1.57000000e+02, 0.00000000e+00, 0.00000000e+00, 2.80000000e+01],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
7.60000000e+01, 0.00000000e+00, 2.70000000e+01, 0.00000000e+00,
0.00000000e+00, 4.60000000e+01, 0.00000000e+00, 2.30000000e+01,
0.00000000e+00, 0.00000000e+00, 2.01000000e+02, 7.50000000e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 6.10000000e+01],
[ 2.40000000e+01, 9.60000000e+01, 0.00000000e+00, 2.20000000e+01,
6.98000000e+02, 0.00000000e+00, 1.27000000e+02, 3.70000000e+01,
1.30000000e+01, 2.80000000e+01, 0.00000000e+00, 9.50000000e+01,
0.00000000e+00, 0.00000000e+00, 8.00000000e+00, 3.40000000e+01,
4.20000000e+01, 2.80000000e+01, 6.10000000e+01, 0.00000000e+00]])
DSO78_freqs = {'A': 0.087126912873087131, 'C': 0.033473966526033475,
'E': 0.04952995047004953, 'D': 0.046871953128046873,
'G': 0.088611911388088618, 'F': 0.039771960228039777,
'I': 0.036885963114036892, 'H': 0.033617966382033626,
'K': 0.08048191951808048, 'M': 0.014752985247014754,
'L': 0.085356914643085369, 'N': 0.040431959568040438,
'Q': 0.038254961745038257, 'P': 0.050679949320050689,
'S': 0.069576930423069588, 'R': 0.040903959096040908,
'T': 0.058541941458058543, 'W': 0.010493989506010494,
'V': 0.064717935282064723, 'Y': 0.029915970084029919}
JTT92_matrix = numpy.array(
[[ 0., 56., 81., 105., 15., 179., 27., 36., 35., 30., 54.,
54., 194., 57., 58., 378., 475., 298., 9., 11.],
[ 56., 0., 10., 5., 78., 59., 69., 17., 7., 23., 31.,
34., 14., 9., 113., 223., 42., 62., 115., 209.],
[ 81., 10., 0., 767., 4., 130., 112., 11., 26., 7., 15.,
528., 15., 49., 16., 59., 38., 31., 4., 46.],
[ 105., 5., 767., 0., 5., 119., 26., 12., 181., 9., 18.,
58., 18., 323., 29., 30., 32., 45., 10., 7.],
[ 15., 78., 4., 5., 0., 5., 40., 89., 4., 248., 43.,
10., 17., 4., 5., 92., 12., 62., 53., 536.],
[ 179., 59., 130., 119., 5., 0., 23., 6., 27., 6., 14.,
81., 24., 26., 137., 201., 33., 47., 55., 8.],
[ 27., 69., 112., 26., 40., 23., 0., 16., 45., 56., 33.,
391., 115., 597., 328., 73., 46., 11., 8., 573.],
[ 36., 17., 11., 12., 89., 6., 16., 0., 21., 229., 479.,
47., 10., 9., 22., 40., 245., 961., 9., 32.],
[ 35., 7., 26., 181., 4., 27., 45., 21., 0., 14., 65.,
263., 21., 292., 646., 47., 103., 14., 10., 8.],
[ 30., 23., 7., 9., 248., 6., 56., 229., 14., 0., 388.,
12., 102., 72., 38., 59., 25., 180., 52., 24.],
[ 54., 31., 15., 18., 43., 14., 33., 479., 65., 388., 0.,
30., 16., 43., 44., 29., 226., 323., 24., 18.],
[ 54., 34., 528., 58., 10., 81., 391., 47., 263., 12., 30.,
0., 15., 86., 45., 503., 232., 16., 8., 70.],
[ 194., 14., 15., 18., 17., 24., 115., 10., 21., 102., 16.,
15., 0., 164., 74., 285., 118., 23., 6., 10.],
[ 57., 9., 49., 323., 4., 26., 597., 9., 292., 72., 43.,
86., 164., 0., 310., 53., 51., 20., 18., 24.],
[ 58., 113., 16., 29., 5., 137., 328., 22., 646., 38., 44.,
45., 74., 310., 0., 101., 64., 17., 126., 20.],
[ 378., 223., 59., 30., 92., 201., 73., 40., 47., 59., 29.,
503., 285., 53., 101., 0., 477., 38., 35., 63.],
[ 475., 42., 38., 32., 12., 33., 46., 245., 103., 25., 226.,
232., 118., 51., 64., 477., 0., 112., 12., 21.],
[ 298., 62., 31., 45., 62., 47., 11., 961., 14., 180., 323.,
16., 23., 20., 17., 38., 112., 0., 25., 16.],
[ 9., 115., 4., 10., 53., 55., 8., 9., 10., 52., 24.,
8., 6., 18., 126., 35., 12., 25., 0., 71.],
[ 11., 209., 46., 7., 536., 8., 573., 32., 8., 24., 18.,
70., 10., 24., 20., 63., 21., 16., 71., 0.]])
JTT92_freqs = {'A': 0.076747923252076758, 'C': 0.019802980197019805, 'E': 0.061829938170061841, 'D': 0.05154394845605155, 'G': 0.073151926848073159, 'F': 0.040125959874040135, 'I': 0.053760946239053767, 'H': 0.022943977056022944, 'K': 0.058675941324058678, 'M': 0.023825976174023829, 'L': 0.091903908096091905, 'N': 0.042644957355042652, 'Q': 0.040751959248040752, 'P': 0.050900949099050907, 'S': 0.068764931235068771, 'R': 0.051690948309051694, 'T': 0.058564941435058568, 'W': 0.014260985739014262, 'V': 0.066004933995066004, 'Y': 0.032101967898032102}
AH96_matrix = numpy.array(
[[ 0. , 59.93, 17.67, 9.77, 6.37, 120.71, 13.9 ,
96.49, 8.36, 25.46, 141.88, 26.95, 54.31, 1.9 ,
23.18, 387.86, 480.72, 195.06, 1.9 , 6.48],
[ 59.93, 0. , 1.9 , 1.9 , 70.8 , 30.71, 141.49,
62.73, 1.9 , 25.65, 6.18, 58.94, 31.26, 75.24,
103.33, 277.05, 179.97, 1.9 , 33.6 , 254.77],
[ 17.67, 1.9 , 0. , 583.55, 4.98, 56.77, 113.99,
4.34, 2.31, 1.9 , 1.9 , 794.38, 13.43, 55.28,
1.9 , 69.02, 28.01, 1.9 , 19.86, 21.21],
[ 9.77, 1.9 , 583.55, 0. , 2.67, 28.28, 49.12,
3.31, 313.86, 1.9 , 1.9 , 63.05, 12.83, 313.56,
1.9 , 54.71, 14.82, 21.14, 1.9 , 13.12],
[ 6.37, 70.8 , 4.98, 2.67, 0. , 1.9 , 48.16,
84.67, 6.44, 216.06, 90.82, 15.2 , 17.31, 19.11,
4.69, 64.29, 33.85, 6.35, 7.84, 465.58],
[ 120.71, 30.71, 56.77, 28.28, 1.9 , 0. , 1.9 ,
5.98, 22.73, 2.41, 1.9 , 53.3 , 1.9 , 6.75,
23.03, 125.93, 11.17, 2.53, 10.92, 3.21],
[ 13.9 , 141.49, 113.99, 49.12, 48.16, 1.9 , 0. ,
12.26, 127.67, 11.49, 11.97, 496.13, 60.97, 582.4 ,
165.23, 77.46, 44.78, 1.9 , 7.08, 670.14],
[ 96.49, 62.73, 4.34, 3.31, 84.67, 5.98, 12.26,
0. , 19.57, 329.09, 517.98, 27.1 , 20.63, 8.34,
1.9 , 47.7 , 368.43, 1222.94, 1.9 , 25.01],
[ 8.36, 1.9 , 2.31, 313.86, 6.44, 22.73, 127.67,
19.57, 0. , 14.88, 91.37, 608.7 , 50.1 , 465.58,
141.4 , 105.79, 136.33, 1.9 , 24. , 51.17],
[ 25.46, 25.65, 1.9 , 1.9 , 216.06, 2.41, 11.49,
329.09, 14.88, 0. , 537.53, 15.16, 40.1 , 39.7 ,
15.58, 73.61, 126.4 , 91.67, 32.44, 44.15],
[ 141.88, 6.18, 1.9 , 1.9 , 90.82, 1.9 , 11.97,
517.98, 91.37, 537.53, 0. , 65.41, 18.84, 47.37,
1.9 , 111.16, 528.17, 387.54, 21.71, 39.96],
[ 26.95, 58.94, 794.38, 63.05, 15.2 , 53.3 , 496.13,
27.1 , 608.7 , 15.16, 65.41, 0. , 73.31, 173.56,
13.24, 494.39, 238.46, 1.9 , 10.68, 191.36],
[ 54.31, 31.26, 13.43, 12.83, 17.31, 1.9 , 60.97,
20.63, 50.1 , 40.1 , 18.84, 73.31, 0. , 137.29,
23.64, 169.9 , 128.22, 8.23, 4.21, 16.21],
[ 1.9 , 75.24, 55.28, 313.56, 19.11, 6.75, 582.4 ,
8.34, 465.58, 39.7 , 47.37, 173.56, 137.29, 0. ,
220.99, 54.11, 94.93, 19. , 1.9 , 38.82],
[ 23.18, 103.33, 1.9 , 1.9 , 4.69, 23.03, 165.23,
1.9 , 141.4 , 15.58, 1.9 , 13.24, 23.64, 220.99,
0. , 6.04, 2.08, 7.64, 21.95, 1.9 ],
[ 387.86, 277.05, 69.02, 54.71, 64.29, 125.93, 77.46,
47.7 , 105.79, 73.61, 111.16, 494.39, 169.9 , 54.11,
6.04, 0. , 597.21, 1.9 , 38.58, 64.92],
[ 480.72, 179.97, 28.01, 14.82, 33.85, 11.17, 44.78,
368.43, 136.33, 126.4 , 528.17, 238.46, 128.22, 94.93,
2.08, 597.21, 0. , 204.54, 9.99, 38.73],
[ 195.06, 1.9 , 1.9 , 21.14, 6.35, 2.53, 1.9 ,
1222.94, 1.9 , 91.67, 387.54, 1.9 , 8.23, 19. ,
7.64, 1.9 , 204.54, 0. , 5.37, 1.9 ],
[ 1.9 , 33.6 , 19.86, 1.9 , 7.84, 10.92, 7.08,
1.9 , 24. , 32.44, 21.71, 10.68, 4.21, 1.9 ,
21.95, 38.58, 9.99, 5.37, 0. , 26.25],
[ 6.48, 254.77, 21.21, 13.12, 465.58, 3.21, 670.14,
25.01, 51.17, 44.15, 39.96, 191.36, 16.21, 38.82,
1.9 , 64.92, 38.73, 1.9 , 26.25, 0. ]])
AH96_freqs = {
'A': 0.071999999999999995, 'C': 0.0060000000000000001, 'E': 0.024, 'D': 0.019, 'G': 0.056000000000000001, 'F': 0.060999999999999999, 'I': 0.087999999999999995, 'H': 0.028000000000000001, 'K': 0.023, 'M': 0.053999999999999999, 'L': 0.16900000000000001, 'N': 0.039, 'Q': 0.025000000000000001, 'P': 0.053999999999999999, 'S': 0.071999999999999995, 'R': 0.019, 'T': 0.085999999999999993, 'W': 0.029000000000000001, 'V': 0.042999999999999997, 'Y': 0.033000000000000002}
AH96_mtmammals_matrix = numpy.array(
[[ 0.00000000e+00, 0.00000000e+00, 1.10000000e+01, 0.00000000e+00,
0.00000000e+00, 7.80000000e+01, 8.00000000e+00, 7.50000000e+01,
0.00000000e+00, 2.10000000e+01, 7.60000000e+01, 2.00000000e+00,
5.30000000e+01, 0.00000000e+00, 3.20000000e+01, 3.42000000e+02,
6.81000000e+02, 3.98000000e+02, 5.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
7.00000000e+00, 0.00000000e+00, 3.05000000e+02, 4.10000000e+01,
0.00000000e+00, 2.70000000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 1.86000000e+02, 3.47000000e+02,
1.14000000e+02, 0.00000000e+00, 6.50000000e+01, 5.30000000e+02],
[ 1.10000000e+01, 0.00000000e+00, 0.00000000e+00, 5.69000000e+02,
5.00000000e+00, 7.90000000e+01, 1.10000000e+01, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.64000000e+02,
2.00000000e+00, 4.90000000e+01, 0.00000000e+00, 1.60000000e+01,
0.00000000e+00, 1.00000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 5.69000000e+02, 0.00000000e+00,
0.00000000e+00, 2.20000000e+01, 2.20000000e+01, 0.00000000e+00,
2.15000000e+02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 2.74000000e+02, 0.00000000e+00, 2.10000000e+01,
4.00000000e+00, 2.00000000e+01, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 7.00000000e+00, 5.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.70000000e+01,
0.00000000e+00, 2.46000000e+02, 1.10000000e+01, 6.00000000e+00,
1.70000000e+01, 0.00000000e+00, 0.00000000e+00, 9.00000000e+01,
8.00000000e+00, 6.00000000e+00, 0.00000000e+00, 6.82000000e+02],
[ 7.80000000e+01, 0.00000000e+00, 7.90000000e+01, 2.20000000e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.70000000e+01,
0.00000000e+00, 0.00000000e+00, 1.80000000e+01, 1.12000000e+02,
0.00000000e+00, 5.00000000e+00, 0.00000000e+00, 1.00000000e+00],
[ 8.00000000e+00, 3.05000000e+02, 1.10000000e+01, 2.20000000e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 2.60000000e+01, 0.00000000e+00, 4.58000000e+02,
5.30000000e+01, 5.50000000e+02, 2.32000000e+02, 2.00000000e+01,
1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.52500000e+03],
[ 7.50000000e+01, 4.10000000e+01, 0.00000000e+00, 0.00000000e+00,
5.70000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
6.00000000e+00, 2.32000000e+02, 3.78000000e+02, 1.90000000e+01,
5.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
3.60000000e+02, 2.22000000e+03, 0.00000000e+00, 1.60000000e+01],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.15000000e+02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 6.00000000e+00,
0.00000000e+00, 4.00000000e+00, 5.90000000e+01, 4.08000000e+02,
1.80000000e+01, 2.42000000e+02, 5.00000000e+01, 6.50000000e+01,
5.00000000e+01, 0.00000000e+00, 0.00000000e+00, 6.70000000e+01],
[ 2.10000000e+01, 2.70000000e+01, 0.00000000e+00, 0.00000000e+00,
2.46000000e+02, 0.00000000e+00, 2.60000000e+01, 2.32000000e+02,
4.00000000e+00, 0.00000000e+00, 6.09000000e+02, 0.00000000e+00,
4.30000000e+01, 2.00000000e+01, 6.00000000e+00, 7.40000000e+01,
3.40000000e+01, 1.00000000e+02, 1.20000000e+01, 2.50000000e+01],
[ 7.60000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.10000000e+01, 0.00000000e+00, 0.00000000e+00, 3.78000000e+02,
5.90000000e+01, 6.09000000e+02, 0.00000000e+00, 2.10000000e+01,
0.00000000e+00, 2.20000000e+01, 0.00000000e+00, 4.70000000e+01,
6.91000000e+02, 8.32000000e+02, 1.30000000e+01, 0.00000000e+00],
[ 2.00000000e+00, 0.00000000e+00, 8.64000000e+02, 0.00000000e+00,
6.00000000e+00, 4.70000000e+01, 4.58000000e+02, 1.90000000e+01,
4.08000000e+02, 0.00000000e+00, 2.10000000e+01, 0.00000000e+00,
3.30000000e+01, 8.00000000e+00, 4.00000000e+00, 4.46000000e+02,
1.10000000e+02, 0.00000000e+00, 6.00000000e+00, 1.56000000e+02],
[ 5.30000000e+01, 0.00000000e+00, 2.00000000e+00, 0.00000000e+00,
1.70000000e+01, 0.00000000e+00, 5.30000000e+01, 5.00000000e+00,
1.80000000e+01, 4.30000000e+01, 0.00000000e+00, 3.30000000e+01,
0.00000000e+00, 5.10000000e+01, 9.00000000e+00, 2.02000000e+02,
7.80000000e+01, 0.00000000e+00, 7.00000000e+00, 8.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 4.90000000e+01, 2.74000000e+02,
0.00000000e+00, 0.00000000e+00, 5.50000000e+02, 0.00000000e+00,
2.42000000e+02, 2.00000000e+01, 2.20000000e+01, 8.00000000e+00,
5.10000000e+01, 0.00000000e+00, 2.46000000e+02, 3.00000000e+01,
0.00000000e+00, 3.30000000e+01, 0.00000000e+00, 5.40000000e+01],
[ 3.20000000e+01, 1.86000000e+02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.80000000e+01, 2.32000000e+02, 0.00000000e+00,
5.00000000e+01, 6.00000000e+00, 0.00000000e+00, 4.00000000e+00,
9.00000000e+00, 2.46000000e+02, 0.00000000e+00, 3.00000000e+00,
0.00000000e+00, 0.00000000e+00, 1.60000000e+01, 0.00000000e+00],
[ 3.42000000e+02, 3.47000000e+02, 1.60000000e+01, 2.10000000e+01,
9.00000000e+01, 1.12000000e+02, 2.00000000e+01, 0.00000000e+00,
6.50000000e+01, 7.40000000e+01, 4.70000000e+01, 4.46000000e+02,
2.02000000e+02, 3.00000000e+01, 3.00000000e+00, 0.00000000e+00,
6.14000000e+02, 0.00000000e+00, 1.70000000e+01, 1.07000000e+02],
[ 6.81000000e+02, 1.14000000e+02, 0.00000000e+00, 4.00000000e+00,
8.00000000e+00, 0.00000000e+00, 1.00000000e+00, 3.60000000e+02,
5.00000000e+01, 3.40000000e+01, 6.91000000e+02, 1.10000000e+02,
7.80000000e+01, 0.00000000e+00, 0.00000000e+00, 6.14000000e+02,
0.00000000e+00, 2.37000000e+02, 0.00000000e+00, 0.00000000e+00],
[ 3.98000000e+02, 0.00000000e+00, 1.00000000e+01, 2.00000000e+01,
6.00000000e+00, 5.00000000e+00, 0.00000000e+00, 2.22000000e+03,
0.00000000e+00, 1.00000000e+02, 8.32000000e+02, 0.00000000e+00,
0.00000000e+00, 3.30000000e+01, 0.00000000e+00, 0.00000000e+00,
2.37000000e+02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 5.00000000e+00, 6.50000000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.20000000e+01, 1.30000000e+01, 6.00000000e+00,
7.00000000e+00, 0.00000000e+00, 1.60000000e+01, 1.70000000e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.40000000e+01],
[ 0.00000000e+00, 5.30000000e+02, 0.00000000e+00, 0.00000000e+00,
6.82000000e+02, 1.00000000e+00, 1.52500000e+03, 1.60000000e+01,
6.70000000e+01, 2.50000000e+01, 0.00000000e+00, 1.56000000e+02,
8.00000000e+00, 5.40000000e+01, 0.00000000e+00, 1.07000000e+02,
0.00000000e+00, 0.00000000e+00, 1.40000000e+01, 0.00000000e+00]])
AH96_mtmammals_freqs = {
'A': 0.069199999999999998, 'C': 0.0064999999999999997,
'E': 0.023599999999999999, 'D': 0.018599999999999998,
'G': 0.0557, 'F': 0.061100000000000002,
'I': 0.090499999999999997, 'H': 0.027699999999999999,
'K': 0.022100000000000002, 'M': 0.056099999999999997,
'L': 0.16750000000000001, 'N': 0.040000000000000001,
'Q': 0.023800000000000002, 'P': 0.053600000000000002,
'S': 0.072499999999999995, 'R': 0.0184,
'T': 0.086999999999999994, 'W': 0.0293,
'V': 0.042799999999999998, 'Y': 0.034000000000000002}
WG01_matrix = numpy.array(
[[ 0. , 1.02704 , 0.738998, 1.58285 , 0.210494, 1.41672 ,
0.316954, 0.193335, 0.906265, 0.397915, 0.893496, 0.509848,
1.43855 , 0.908598, 0.551571, 3.37079 , 2.12111 , 2.00601 ,
0.113133, 0.240735 ],
[ 1.02704 , 0. , 0.0302949, 0.021352, 0.39802 , 0.306674,
0.248972, 0.170135, 0.0740339, 0.384287, 0.390482, 0.265256,
0.109404, 0.0988179, 0.528191, 1.40766 , 0.512984, 1.00214 ,
0.71707 , 0.543833 ],
[ 0.738998, 0.0302949, 0. , 6.17416 , 0.0467304, 0.865584,
0.930676, 0.039437, 0.479855, 0.0848047, 0.103754, 5.42942 ,
0.423984, 0.616783, 0.147304, 1.07176 , 0.374866, 0.152335,
0.129767, 0.325711 ],
[ 1.58285 , 0.021352, 6.17416 , 0. , 0.0811339, 0.567717,
0.570025, 0.127395, 2.58443 , 0.154263, 0.315124, 0.947198,
0.682355, 5.46947 , 0.439157, 0.704939, 0.822765, 0.588731,
0.156557, 0.196303 ],
[ 0.210494, 0.39802 , 0.0467304, 0.0811339, 0. , 0.049931,
0.679371, 1.05947 , 0.088836, 2.11517 , 1.19063 , 0.0961621,
0.161444, 0.0999208, 0.102711, 0.545931, 0.171903, 0.649892,
1.52964 , 6.45428 ],
[ 1.41672 , 0.306674, 0.865584, 0.567717, 0.049931, 0. ,
0.24941 , 0.0304501, 0.373558, 0.0613037, 0.1741 , 1.12556 ,
0.24357 , 0.330052, 0.584665, 1.34182 , 0.225833, 0.187247,
0.336983, 0.103604 ],
[ 0.316954, 0.248972, 0.930676, 0.570025, 0.679371, 0.24941 ,
0. , 0.13819 , 0.890432, 0.499462, 0.404141, 3.95629 ,
0.696198, 4.29411 , 2.13715 , 0.740169, 0.473307, 0.118358,
0.262569, 3.87344 ],
[ 0.193335, 0.170135, 0.039437, 0.127395, 1.05947 , 0.0304501,
0.13819 , 0. , 0.323832, 3.17097 , 4.25746 , 0.554236,
0.0999288, 0.113917, 0.186979, 0.31944 , 1.45816 , 7.8213 ,
0.212483, 0.42017 ],
[ 0.906265, 0.0740339, 0.479855, 2.58443 , 0.088836, 0.373558,
0.890432, 0.323832, 0. , 0.257555, 0.934276, 3.01201 ,
0.556896, 3.8949 , 5.35142 , 0.96713 , 1.38698 , 0.305434,
0.137505, 0.133264 ],
[ 0.397915, 0.384287, 0.0848047, 0.154263, 2.11517 , 0.0613037,
0.499462, 3.17097 , 0.257555, 0. , 4.85402 , 0.131528,
0.415844, 0.869489, 0.497671, 0.344739, 0.326622, 1.80034 ,
0.665309, 0.398618 ],
[ 0.893496, 0.390482, 0.103754, 0.315124, 1.19063 , 0.1741 ,
0.404141, 4.25746 , 0.934276, 4.85402 , 0. , 0.198221,
0.171329, 1.54526 , 0.683162, 0.493905, 1.51612 , 2.05845 ,
0.515706, 0.428437 ],
[ 0.509848, 0.265256, 5.42942 , 0.947198, 0.0961621, 1.12556 ,
3.95629 , 0.554236, 3.01201 , 0.131528, 0.198221, 0. ,
0.195081, 1.54364 , 0.635346, 3.97423 , 2.03006 , 0.196246,
0.0719167, 1.086 ],
[ 1.43855 , 0.109404, 0.423984, 0.682355, 0.161444, 0.24357 ,
0.696198, 0.0999288, 0.556896, 0.415844, 0.171329, 0.195081,
0. , 0.933372, 0.679489, 1.61328 , 0.795384, 0.314887,
0.139405, 0.216046 ],
[ 0.908598, 0.0988179, 0.616783, 5.46947 , 0.0999208, 0.330052,
4.29411 , 0.113917, 3.8949 , 0.869489, 1.54526 , 1.54364 ,
0.933372, 0. , 3.0355 , 1.02887 , 0.857928, 0.301281,
0.215737, 0.22771 ],
[ 0.551571, 0.528191, 0.147304, 0.439157, 0.102711, 0.584665,
2.13715 , 0.186979, 5.35142 , 0.497671, 0.683162, 0.635346,
0.679489, 3.0355 , 0. , 1.22419 , 0.554413, 0.251849,
1.16392 , 0.381533 ],
[ 3.37079 , 1.40766 , 1.07176 , 0.704939, 0.545931, 1.34182 ,
0.740169, 0.31944 , 0.96713 , 0.344739, 0.493905, 3.97423 ,
1.61328 , 1.02887 , 1.22419 , 0. , 4.37802 , 0.232739,
0.523742, 0.786993 ],
[ 2.12111 , 0.512984, 0.374866, 0.822765, 0.171903, 0.225833,
0.473307, 1.45816 , 1.38698 , 0.326622, 1.51612 , 2.03006 ,
0.795384, 0.857928, 0.554413, 4.37802 , 0. , 1.38823 ,
0.110864, 0.291148 ],
[ 2.00601 , 1.00214 , 0.152335, 0.588731, 0.649892, 0.187247,
0.118358, 7.8213 , 0.305434, 1.80034 , 2.05845 , 0.196246,
0.314887, 0.301281, 0.251849, 0.232739, 1.38823 , 0. ,
0.365369, 0.31473 ],
[ 0.113133, 0.71707 , 0.129767, 0.156557, 1.52964 , 0.336983,
0.262569, 0.212483, 0.137505, 0.665309, 0.515706, 0.0719167,
0.139405, 0.215737, 1.16392 , 0.523742, 0.110864, 0.365369,
0. , 2.48539 ],
[ 0.240735, 0.543833, 0.325711, 0.196303, 6.45428 , 0.103604,
3.87344 , 0.42017 , 0.133264, 0.398618, 0.428437, 1.086 ,
0.216046, 0.22771 , 0.381533, 0.786993, 0.291148, 0.31473 ,
2.48539 , 0. ]])
WG01_freqs = {
'A': 0.086627908662790867, 'C': 0.019307801930780195,
'E': 0.058058905805890577, 'D': 0.057045105704510574,
'G': 0.083251808325180837, 'F': 0.038431903843190382,
'I': 0.048466004846600491, 'H': 0.024431302443130246,
'K': 0.062028606202860624, 'M': 0.019502701950270197,
'L': 0.086209008620900862, 'N': 0.039089403908940397,
'Q': 0.036728103672810368, 'P': 0.045763104576310464,
'S': 0.069517906951790692, 'R': 0.043972004397200441,
'T': 0.061012706101270617, 'W': 0.014385901438590145,
'V': 0.070895607089560719, 'Y': 0.035274203527420354}
def DSO78(**kw):
"""Dayhoff et al 1978 empirical protein model
Dayhoff, MO, Schwartz RM, and Orcutt, BC. 1978
A model of evolutionary change in proteins. Pp. 345-352.
Atlas of protein sequence and structure, Vol 5, Suppl. 3.
National Biomedical Research Foundation, Washington D. C
Matrix imported from PAML dayhoff.dat file"""
sm = substitution_model.EmpiricalProteinMatrix(
DSO78_matrix, DSO78_freqs, name='DSO78', **kw)
return sm
def JTT92(**kw):
"""Jones, Taylor and Thornton 1992 empirical protein model
Jones DT, Taylor WR, Thornton JM.
The rapid generation of mutation data matrices from protein sequences.
Comput Appl Biosci. 1992 Jun;8(3):275-82.
Matrix imported from PAML jones.dat file"""
sm = substitution_model.EmpiricalProteinMatrix(
JTT92_matrix, JTT92_freqs, name='JTT92', **kw)
return sm
def AH96(**kw):
"""Adachi and Hasegawa 1996 empirical model for mitochondrial proteins.
Adachi J, Hasegawa M.
Model of amino acid substitution in proteins encoded by mitochondrial DNA.
J Mol Evol. 1996 Apr;42(4):459-68.
Matrix imported from PAML mtREV24.dat file"""
sm = substitution_model.EmpiricalProteinMatrix(
AH96_matrix,
AH96_freqs,
name='AH96_mtREV24',
**kw)
return sm
def mtREV(**kw):
return AH96(**kw)
def AH96_mtmammals(**kw):
"""Adachi and Hasegawa 1996 empirical model for mammalian mitochondrial
proteins.
Adachi J, Hasegawa M.
Model of amino acid substitution in proteins encoded by mitochondrial DNA.
J Mol Evol. 1996 Apr;42(4):459-68.
Matrix imported from PAML mtmam.dat file"""
sm = substitution_model.EmpiricalProteinMatrix(
AH96_mtmammals_matrix,
AH96_mtmammals_freqs,
name='AH96_mtmammals',
**kw)
return sm
def mtmam(**kw):
return AH96_mtmammals(**kw)
def WG01(**kw):
"""Whelan and Goldman 2001 empirical model for globular proteins.
Whelan S, Goldman N.
A general empirical model of protein evolution derived from multiple protein
families using a maximum-likelihood approach.
Mol Biol Evol. 2001 May;18(5):691-9.
Matrix imported from PAML wag.dat file"""
sm = substitution_model.EmpiricalProteinMatrix(
WG01_matrix,
WG01_freqs,
name='WG01',
**kw)
return sm
|