This file is indexed.

/usr/share/pyshared/cogent/seqsim/analysis.py is in python-cogent 1.5.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#!/usr/bin/env python
from tree import RangeNode, balanced_breakpoints
from cogent.core.usage import DnaPairs
from usage import Counts
from random import choice
from numpy.linalg import det as determinant, inv as inverse
from numpy import sqrt, newaxis as NewAxis, exp, dot, zeros, ravel, array, \
                  float64, max, min, average, any, pi
from cogent.util.array import without_diag
from cogent.maths.svd import three_item_combos, two_item_combos
from cogent.maths.stats.test import std

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

def tree_threeway_counts(tree, lca_depths, alphabet=DnaPairs, attr='Sequence'):
    """From tree and array of lca_depths, returns n*n*n array of Count objects.

    n is number of leaves.

    lca_depths: array (leaf * leaf) of depths of last common ancestor.
    alphabet: pair alphabet for input sequences.

    Returns dict containing counts for (i, j, k) and (j, i, k) where k is the
    outgroup of the three sequences. Will pick an arbitrary node to be the
    outgroup if there is a polytomy.
    
    Note: Leaves of tree must have sequences already assigned.
    """
    outgroup_last = tree.outgroupLast
    leaves = list(tree.traverse())
    result = {}
    for first, second, third in three_item_combos(leaves):
        new_first, new_second, new_third = outgroup_last(first, second, third)
        #get the sequence from each node
        seq_1 = getattr(new_first, attr)
        seq_2 = getattr(new_second, attr)
        seq_3 = getattr(new_third, attr)
        
        result[(new_first.Id, new_second.Id, new_third.Id)] = \
            Counts.fromTriple(seq_1, seq_2, seq_3, alphabet)
        #don't forget to do counts from both  the non-outgroups
        result[(new_second.Id, new_first.Id, new_third.Id)] = \
            Counts.fromTriple(seq_2, seq_1, seq_3, alphabet)
    return result

def dna_count_cleaner(counts):
    """Cleans DNA counts to just the 4-letter alphabet."""
    return Counts(counts._data[:4,:4], DnaPairs)

def tree_threeway_counts_sample(tree, lca_depths, alphabet=DnaPairs, \
    attr='Sequence', n=1000, check_rates=True, clean_f=None):
    """Like tree_threeway_counts, but takes random sample (w/o replacement)."""
    leaves = list(tree.traverse())
    num_leaves = len(leaves)
    #do normal threeway counts if number of triples < n
    num_triples = num_leaves * (num_leaves - 1) * (num_leaves-2) / 3
    if num_triples < n:
        counts = tree_threeway_counts(tree, lca_depths, alphabet, attr)
        if clean_f:
            result = {}
            for k, v in counts.items():
                result[k] = clean_f(v)
            return result
        else:
            return counts
    #if we got here, need to sample
    outgroup_last = tree.outgroupLast
    i = 0
    seen = {}
    result = {}
    while i < n and len(seen) < num_triples:
        #bail out if same node picked twice, or if resampling same combo
        curr = choice(leaves), choice(leaves), choice(leaves)
        ids = tuple([c.Id for c in curr])
        if len(dict.fromkeys(ids)) < len(curr):     #picked same thing twice
            continue
        if curr in seen:
            continue
        first, second, third = curr
        new_first, new_second, new_third = outgroup_last(first, second, third)
        seq_1 = getattr(new_first, attr)
        seq_2 = getattr(new_second, attr)
        seq_3 = getattr(new_third, attr)

        counts = Counts.fromTriple(seq_1, seq_2, seq_3, alphabet)
        if clean_f:
            counts = clean_f(counts)
        key = (new_first.Id, new_second.Id, new_third.Id)
        #check rates if we need to
        if check_rates:
            try:
                #skip probs with zero rows
                if not min(max(counts._data,1)):
                    continue
                probs = counts.toProbs()
                rates = probs.toRates()
            except (ZeroDivisionError, OverflowError, ValueError, \
                FloatingPointError):
                continue
            result[key] = counts
        i += 1
    return result
        

def tree_twoway_counts(tree, alphabet=DnaPairs, average=True, attr='Sequence'):
    """From tree, return dict of Count objects.

    Note: if average is True, only has counts in m[i,j] or m[j,i], not both.
    """
    leaves = list(tree.traverse())
    result = {}
    if average:
        #return symmetric matrix
        for first, second in two_item_combos(leaves):
            seq_1 = getattr(first, attr)
            seq_2 = getattr(second, attr)
            result[(first.Id, second.Id)] = \
                Counts.fromPair(seq_1, seq_2, alphabet)
    else:
        for first, second in two_item_combos(leaves):
            seq_1 = getattr(first, attr)
            seq_2 = getattr(second, attr)
            result[(first.Id, second.Id)] = \
                Counts.fromPair(seq_1, seq_2, alphabet,False)
            result[(second.Id, first.Id)] = \
                Counts.fromPair(seq_2, seq_1, alphabet,False)
    return result


def counts_to_probs(count_dict):
    """Converts counts to probs, omitting problem cases."""
    result = {}
    for key, val in count_dict.items():
        #check for zero rows
        if not min(max(val._data,1)):
            continue
        try:
            p = val.toProbs()
            #the following detects nan from divide by zero for empty rows
            #this works because nan doesn't compare equal to itself
            first_col = p._data[:,0]
            if any(first_col != first_col):
                raise ZeroDivisionError
            #if we got here, everything was OK
            result[key] = val.toProbs()
        except (ZeroDivisionError, OverflowError,ValueError,FloatingPointError):
            #errors are platform-dependent and arise when a row is zero
            #(i.e. if a character doesn't appear in the sequence).
            pass
    return result

def probs_to_rates(prob_dict, fix_f=None, normalize=False, ftol=0.01):
    """Converts probs to rates, omitting problem cases (but not neg off-diags).
    
    ftol is in log10 units, e.g. ftol of 1 means within one order of magnitude.
    Default = 0.01.
    
    NOTE: fix_f should be an unbound method of Rates, or other function that
    expects a rate as a single parameter.
    """
    result = {}
    seen = {}
    for key, val in prob_dict.items():
        try:
            rate = val.toRates(normalize)
            if fix_f:
                rate = fix_f(rate)
            rounded = tuple(map(round, rate._data.flatten()/ftol))
            if rounded in seen:
                continue
            else:
                seen[rounded] = 1
            #check for zero rows
            if not min(max(rate._data,1)):
                continue
            #check for zero cols
            if not min(max(rate._data)):
                continue
            if (not rate.isSignificantlyComplex()): # and rate.isValid():
                result[key] = rate
        except (ZeroDivisionError, OverflowError,ValueError,FloatingPointError):
            #errors are platform-dependent
            pass
    return result
       
def tree_threeway_rates(tree, lca_depths, alphabet=DnaPairs, fix_f=None, \
    normalize=False, without_diag=False):
    """Generates matrix of all valid three-way rate matrices from a tree.
    
    Dimensions of matrix are (num_leaves, num_leaves, num_leaves, flat_rate),
    i.e. m[0][1][2] gives you the matrix for leaves 0,1,2.
    In general, expect to get matrices out of the tree by slicing rather than
    by indexing, since many rates will be empty due to inference problems.
    """
    leaves = len(list(tree.traverse()))
    counts = tree_threeway_counts(tree, lca_depths, alphabet)
    rates = probs_to_rates(counts_to_probs(counts), fix_f, normalize)
    return threeway_rates_to_array(rates, leaves, alphabet, without_diag)

def tree_twoway_rates(tree, alphabet=DnaPairs, average=False, fix_f=None, \
    normalize=False, without_diag=False):
    """Generates all valid two-way rate matrices from a tree.
    
    Dimensions of matrix are (num_leaves, num_leaves, num_leaves, flat_rate),
    i.e. m[0][1][2] gives you the matrix for leaves 0,1,2.
    In general, expect to get matrices out of the tree by slicing rather than
    by indexing, since many rates will be empty due to inference problems.
    """
    leaves = len(list(tree.traverse()))
    counts = tree_twoway_counts(tree, alphabet, average)
    probs = counts_to_probs(counts)
    r = probs_to_rates(probs, fix_f, normalize)
    return twoway_rates_to_array(r, leaves, alphabet, without_diag)

def twoway_rates_to_array(rates, num_seqs, alphabet=DnaPairs, \
    without_diag=True):
    """Fills an array with flat twoway_rates arrays."""
    if without_diag:
        result = zeros((num_seqs, num_seqs, len(alphabet)- \
            len(alphabet.SubEnumerations[0])),
            float64)
    else:
        result = zeros((num_seqs, num_seqs, len(alphabet)), float64)
    return rates_to_array(rates, result, without_diag)

def threeway_rates_to_array(rates, num_seqs, alphabet=DnaPairs, \
    without_diag=True):
    """Fills an array with flat threeway_rates arrays."""
    if without_diag:
        result = zeros((num_seqs, num_seqs, num_seqs, \
            len(alphabet) - len(alphabet.SubEnumerations[0])), float64)
    else:
        result = zeros((num_seqs, num_seqs, num_seqs, len(alphabet)), float64)
    return rates_to_array(rates, result, without_diag)

def rates_to_array(rates, to_fill, without_diagonal=False):
    """Fills rates into a pre-existing array object.

    Assumes that all keys in rates are valid indices into to_fill, and that the
    last dimension of to_fill is the same size as the flattened values in rates.
    
    If without_diagonal is True (False by default), removes the diagonals from 
    the data before placing in the array. Note that we can't call this
    without_diag or we collide with the function we want to call to strip
    the diagonal.
    
    WARNING: size of to_fill array must be adjusted to be the right size as the
    inputs, i.e. last dimension same as flat array with/without diagonals.
    """
    if without_diagonal:
        for key, val in rates.items():
            to_fill[key] = ravel(without_diag(val._data))
    else:
        for key, val in rates.items():
            to_fill[key] = ravel(val._data)
    return to_fill

def multivariate_normal_prob(x, cov, mean=None):
    """Returns multivariate normal probability density of vector x.
    
    Formula: http://www.riskglossary.com/link/joint_normal_distribution.htm
    """
    if mean is None:
        mean = zeros(len(x))
    diff_row = x-mean
    diff_col = diff_row[:,NewAxis]
    numerator = exp(-0.5 * dot(dot(diff_row, inverse(cov)), diff_col))
    denominator = sqrt((2*pi)**(len(x)) * determinant(cov))
    return numerator/denominator

######### WARNING: TESTS END HERE! ###########################


def classify_tree(tree, comparison_sets):
    """Takes a tree and a dict of label -> distributions. Returns node -> label."""
    pass
    
def balanced_two_q_tree(n, length=0.05, seq_length=100, change_depth=2,\
        perturb=True, both=False):
    """Makes single random tree with specified nodes, branch and seq length.
    
    Two random rate matrices are assigned.
    """
    t = BalancedTree(n)
    t.assignLengths(length)
    if perturb:
        t.pertubrAttr('Length', xxx)
        raise   #NOT FINISHED
    q = Rates.random()
    scale_trace(q)
    t.Q = q
    curr_node = t
    for i in range(change_depth):
        curr_node = choice(curr_node)
    q2 = random_q_matrix()
    scale_trace(q2)
    curr_node.Q = q2
    t.assignQ()
    t.assignP()
    t.Sequence = rand_rna(seq_length)
    t.assignSeqs()
    if both:
        return t, curr_node
    else:
        return t

def balanced_multi_q_tree(n, length=0.05, seq_length=100,perturb=True):
    """Makes single random tree with specified nodes, branch and seq length.
    
    Every node gets its own random rate matrix.
    """
    t = BalancedTree(n)
    t.assignLengths({},default=length)
    if perturb:
        perturb_lengths(t)
    for node in t.traverse():
        q = random_q_matrix()
        scale_trace(q)
        node.Q = q
    t.assignQ()
    t.assignP()
    t.Sequence = rand_rna(seq_length)
    t.assignSeqs()
    return t

def get_matrix_stats(qs, true_q=None):
    """Returns list of matrix stats. Expects flat q matrices as input."""
    #set up flat q matrices
    flat_qs = flatten_q_matrices(qs)
    for q in qs:
        scale_trace(qs)
    flat_scaled_qs = flatten_q_matrices(qs)
    #get covariance and correl matrices
    covar = cov(flat_qs)
    correl = corrcoef(flat_qs)
    norm_covar = euclidean_norm(covar)
    norm_correl = euclidean_norm(correl)
    covar_e = list(eigenvalues(covar).real)
    covar_e.sort()
    covar_e.reverse()
    correl_e = list(eigenvalues(correl).real)
    correl_e.sort()
    correl_e.reverse()
    two_best_covar = ratio_two_best(covar_e)
    two_best_correl = ratio_two_best(correl_e)
    frac_best_covar = ratio_best_to_sum(covar_e)
    frac_best_correl = ratio_best_to_sum(correl_e)
    weiss_stat = weiss(covar_e)
    #get summary stats from scaled qs
    distances = dists_from_mean(flat_scaled_qs)
    mean_dist = average(distances)
    var_dist = var(distances)
    if true_q:
        mean_q = mean(flat_scaled_qs)
        q_error = euclidean_distance(mean_q, true_q)
    else:
        q_error = 0
    norm_scaled_covar = euclidean_norm(cov(flat_scaled_qs))

    result = [norm_covar, norm_correl, two_best_covar, \
            two_best_correl, frac_best_covar, frac_best_correl, weiss_stat, \
            mean_dist, var_dist, q_error, norm_scaled_covar]
    result.extend(correl_e)
    result.extend(covar_e)
    return result

def compare_distance_to_weiss(t):
    """Given a tree, calculate 2-sequence Weiss statistic and 3-seq variation.

    Returns tuple containing Weiss, eigenvector ratio, and var of 3-seq dist."""
    three_subs = all_p_from_tree(t)
    pair_subs = pair_p_from_tree(t)
    three_qs = get_qs(three_subs)
    pair_qs = get_qs(pair_subs)
    pairs_no_diag = map(array, map(take_off_diag, pair_qs))
    three_qs_copy = [i.copy() for i in three_qs]
    for i in three_qs: scale_trace(i)
    pairs_flat = flatten_q_matrices(pairs_no_diag)
    three_flat = flatten_q_matrices(three_qs)
    three_distances = dists_from_mean(three_flat)
    mean_three = average(three_distances)
    var_three = var(three_distances)
    pair_distances = dists_from_mean(pairs_flat)
    mean_pair = average(pair_distances)
    var_pair = var(pair_distances)
    
    three_qs_copy_flat = flatten_q_matrices(three_qs_copy)
    three_cor_matrix = corrcoef(three_qs_copy_flat)
    three_ratio = ratio_two_best(list(eigenvalues(three_cor_matrix).real))
    
    cov_matrix = cov(pairs_flat)
    covar_e = list(eigenvalues(cov_matrix).real)
    covar_e.sort()
    covar_e.reverse()
    two_ratio = ratio_two_best(covar_e)
    weiss_stat = weiss(covar_e)
    return [mean_pair, var_pair, mean_three, var_three, two_ratio, three_ratio, weiss_stat]
    

def distance_to_weiss_header():
    return ['mean_pair', 'var_pair', 'mean_three', 'var_three', 'two_ratio',\
            'three_ratio', 'weiss_stat']

def mean_var_eigen(t):
    """Returns mean and variance of branch lengths and 3-seq eigen of tree"""
    three_subs = all_p_from_tree(t)
    three_qs = get_qs(three_subs)
    three_qs_copy = [i.copy() for i in three_qs]
    for i in three_qs: scale_trace(i)
    three_flat = flatten_q_matrices(three_qs)
    three_distances = dists_from_mean(three_flat)
    mean_three = average(three_distances)
    var_three = var(three_distances)

    three_qs_copy_flat = flatten_q_matrices(three_qs_copy)
    three_cor_matrix = corrcoef(three_qs_copy_flat)
    three_ratio = ratio_two_best(list(eigenvalues(three_cor_matrix).real))

    return [mean_three, var_three, three_ratio]

def mean_var_eigen_header():
    return ['mean_three', 'var_three', 'ratio_three']

def svd_tests(n):
    """Runs some tests of svd on samples of n random matrices"""
    print 'SVD tests...'
    tests = {'random':random_mats, 'random q':random_q_mats, \
        'scaled q':scale_one_q, 'scaled many': scale_many_q}
    for name, f in tests.items():
            print name, ':\n', svd_q(f(n))

def tree_tests(n, leaves=8, slen=100, blen=0.1):
    """Runs some tests of svd on trees"""
    print "Tree tests..."
    print "single matrix"
    for i in range(n):
        t = balanced_one_q_tree(n=leaves, seq_length=slen, length=blen)
        ps = all_p_from_tree(t)
        print svd_q(get_qs(ps)).real

    print "two matrices"
    for i in range(n):
        t = balanced_two_q_tree(n=leaves, seq_length=slen, length=blen)
        ps = all_p_from_tree(t)
        print svd_q(get_qs(all_p_from_tree(t))).real
    print "many matrices"
    for i in range(n):
        ps = all_p_from_tree(t)
        t = balanced_multi_q_tree(n=leaves, seq_length=slen, length=blen)
        print svd_q(get_qs(all_p_from_tree(t))).real

def stats_from_tree(t):
    ps = all_p_from_tree(t)
    qs = get_qs(ps)
    return get_matrix_stats(qs)

def tree_stats(n, tree_f, result_f):
    for i in range(n):
        t = tree_f()
        yield result_f(t)

def tree_stats_header():
    header += ['norm_covar', 'norm_correl', 'two_best_covar', 'two_best_correl',
        'frac_best_covar', 'frac_best_correl', 'weiss_stat', 'mean_dist',
        'var_dist', 'q_error', 'norm_scaled_covar']
    for i in range(16):
        header.append('cor_'+str(i))
    for i in range(16):
        header.append('cov_'+str(i))
    return header

def tree_stats_analysis(n, header_f, result_f, leaves=16, slen=1000, blen=0.1, \
        tree_f=balanced_two_q_tree, tree_f_name='two_q'):
    make_tree = lambda: tree_f(n=leaves, seq_length=slen, length=blen)
    shared_params = [leaves, slen, blen, tree_f_name]
    shared_header = ['n', 'leaves', 'seq_len', 'branch_len', 'type']
    print '\t'.join(shared_header + header_f())
    for i, data in enumerate(tree_stats(n, make_tree, result_f)):
        result = [i] + shared_params + data
        print '\t'.join(map(str, result))

def perturb_lengths(t):
    """Perturbs the branch lengths in t by multiplying each by (0.5,1.5)."""
    for node in t.traverse():
        if node.Length:
            node.Length *= (0.5 + random())

def stats_from_tree_analysis(n):
    tree_stats_analysis(n, header_f=tree_stats_header, result_f=stats_from_tree)

def q_matrix_compare_analysis(n):
    tree_stats_analysis(n, header_f=distance_to_weiss_header, \
        result_f=compare_distance_to_weiss, tree_f=balanced_one_q_tree, \
        tree_f_name='one_q')
    tree_stats_analysis(n, header_f=distance_to_weiss_header, \
        result_f=compare_distance_to_weiss, tree_f=balanced_two_q_tree, \
        tree_f_name='two_q')
    tree_stats_analysis(n, header_f=distance_to_weiss_header, \
        result_f=compare_distance_to_weiss, tree_f=balanced_multi_q_tree, \
        tree_f_name='multi_q')

def change_length_analysis(n, branch_lengths=\
    [0.05, 0.1, 0.15, 0.2, 0.25,0.3, 0.35, 0.4], leaves=16, slen=1000):
    header = ['mean_three_m','mean_three_sd','var_three_m', 'var_three_sd', \
        'ratio_three_m', 'ratio_three_sd']
    conditions = {'one_q':balanced_one_q_tree, 'two_q':balanced_two_q_tree, \
        'multi_q':balanced_multi_q_tree}
    condition_names = ['one_q', 'two_q', 'multi_q']
    result_f = mean_var_eigen
    full_header = ['length'] + \
        [name+i for name in condition_names for i in header]
    print '\t'.join(full_header)
    for b in lengths:
        result = [b]
        for c in condition_names:
            tree_f = conditions[c]
            make_tree = lambda:tree_f(n=leaves,seq_length=slen,length=b,\
                    perturb=False)
            samples = list(tree_stats(n, make_tree, result_f))
            means = average(samples)
            stdevs = std(samples)
            for i in zip(means, stdevs):
                result.extend(i)
        print '\t'.join(map(str, result))

def tree_change_analysis(n):
    """Test whether we can see a change in stats for the first subtree w/ Q2"""
    header = ['mean_three','var_three', 'ratio_three']
    result_f = mean_var_eigen
    print '\t'.join(['n'] + header + header)
    for i in range(n):
        t, d = balanced_two_q_tree(n=16, seq_length=1000, length=0.1, \
            perturb=False, both=True)
        d_result = result_f(d)
        p_result = result_f(d.Parent)
        print '\t'.join(map(str, [i] + d_result + p_result))
        
if __name__ == '__main__':
    t = tree_controller()