/usr/share/pyshared/cogent/util/array.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | #!/usr/bin/env python
"""Provides small utility functions for numpy arrays.
"""
from operator import mul, __getitem__ as getitem
from numpy import array, arange, logical_not, cumsum, where, compress, ravel,\
zeros, put, take, sort, searchsorted, log, nonzero, sum,\
sqrt, clip, maximum, reshape, argsort, argmin, repeat, product, identity,\
concatenate, less, trace, newaxis, min, pi
from numpy.random import randint, normal
import numpy
from cogent.util.transform import cross_comb
def cartesian_product(lists):
"""Returns cartesian product of lists as list of tuples.
WARNING: Explicitly constructs list in memory. Should use generator
version in cogent.util.transform instead for most uses.
Provided for compatibility.
"""
return map(tuple, cross_comb(lists))
numerictypes = numpy.core.numerictypes.sctype2char
Float = numerictypes(float)
Int = numerictypes(int)
err = numpy.seterr(divide='raise')
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Sandra Smit"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Development"
def gapped_to_ungapped(orig, gap_state, remove_mask=False):
"""Return array converting gapped to ungapped indices based on gap state.
Will use == to test whether items equal the gapped state. Assumes character
arrays.
If remove_mask is True (default is False), will assign positions that are
only in the gapped but not the ungapped version to -1 for easy detection.
"""
return masked_to_unmasked(orig == gap_state, remove_mask)
def ungapped_to_gapped(orig, gap_state):
"""Returns array mapping indices in ungapped sequence to indices in orig.
See documentation for unmasked_to_masked for more detail.
"""
return unmasked_to_masked(orig == gap_state)
def masked_to_unmasked(mask, remove_mask=False):
"""Returns array mapping indices in orig to indices in ungapped.
Specifically, for each position in orig, returns the index of the position
in the unmasked sequence of the last non-masked character at or before
that index (i.e. if the index corresponds to a masked position, will return
the index of the previous non-masked position since the masked positions
aren't in the unmasked sequence by definition).
If remove_mask is True (the default is False), sets the masked positions
to -1 for easy detection.
"""
result = cumsum(logical_not(mask), axis=0) -1
if remove_mask:
result = where(mask, -1, result)
return result
def unmasked_to_masked(mask):
"""Returns array mapping indices in ungapped to indices in original.
Any position where the mask is True will be omitted from the final result.
"""
return compress(logical_not(mask), arange(len(mask)))
def pairs_to_array(pairs, num_items=None, transform=None):
"""Returns array with same data as pairs (list of tuples).
pairs can contain (first, second, weight) or (first, second) tuples.
If 2 items in the tuple, weight will be assumed to be 1.
num_items should contain the number of items that the pairs are chosen
from. If None, will calculate based on the largest item in the actual
list.
transform contains a array that maps indices in the pairs coordinates
to other indices, i.e. transform[old_index] = new_index. It is
anticipated that transform will be the result of calling ungapped_to_gapped
on the original, gapped sequence before the sequence is passed into
something that strips out the gaps (e.g. for motif finding or RNA folding).
WARNING: all tuples must be the same length! (i.e. if weight is supplied
for any, it must be supplied for all.
WARNING: if num_items is actually smaller than the biggest index in the
list (+ 1, because the indices start with 0), you'll get an exception
when trying to place the object. Don't do it.
"""
#handle easy case
if not pairs:
return array([])
data = array(pairs)
#figure out if we're mapping the indices to gapped coordinates
if transform is not None:
#pairs of indices
idx_pairs = take(transform, data[:,0:2].astype(Int), axis=0)
else:
idx_pairs = data[:,0:2].astype(Int)
#figure out biggest item if not supplied
if num_items is None:
num_items = int(max(ravel(idx_pairs))) + 1
#make result array
result = zeros((num_items,num_items), Float)
if len(data[0]) == 2:
values = 1
else:
values = data[:,2]
put(ravel(result), idx_pairs[:,0]*num_items+idx_pairs[:,1], values)
return result
ln_2 = log(2)
def log2(x):
"""Returns the log (base 2) of x"
WARNING: log2(0) will give -inf on one platform, but it might raise
an error (Overflow or ZeroDivision on another platform. So don't rely
on getting -inf in your downstream code.
"""
return log(x)/ln_2
def safe_p_log_p(a):
"""Returns -(p*log2(p)) for every non-negative, nonzero p in a.
a: numpy array
WARNING: log2 is only defined on positive numbers, so make sure
there are no negative numbers in the array.
Always returns an array with floats in there to avoid unexpected
results when applying it to an array with just integers.
"""
c = array(a.copy(),Float)
flat = ravel(c)
nz_i = numpy.ravel(nonzero(maximum(flat,0)))
nz_e = take(flat,nz_i, axis=0)
log_nz = log2(nz_e)
flat *= 0
x = nz_e*-log_nz
put(flat,nz_i,x)
return c
def safe_log(a):
"""Returns the log (base 2) of each nonzero item in a.
a: numpy array
WARNING: log2 is only defined on positive numbers, so make sure
there are no negative numbers in the array. Will either return an
array containing floating point exceptions or will raise an
exception, depending on platform.
Always returns an array with floats in there to avoid unexpected
results when applying it to an array with just integers.
"""
c = array(a.copy(),Float)
flat = ravel(c)
nz_i = numpy.ravel(nonzero(flat))
nz_e = take(flat,nz_i, axis=0)
log_nz = log2(nz_e)
put(flat,nz_i,log_nz)
return c
def row_uncertainty(a):
"""Returns uncertainty (Shannon's entropy) for each row in a IN BITS
a: numpy array (has to be 2-dimensional!)
The uncertainty is calculated in BITS not NATS!!!
Will return 0 for every empty row, but an empty array for every empty column,
thanks to this sum behavior:
>>> sum(array([[]]),1)
array([0])
>>> sum(array([[]]))
zeros((0,), 'l')
"""
try:
return sum(safe_p_log_p(a),1)
except ValueError:
raise ValueError, "Array has to be two-dimensional"
def column_uncertainty(a):
"""Returns uncertainty (Shannon's entropy) for each column in a in BITS
a: numpy array (has to be 2-dimensional)
The uncertainty is calculated in BITS not NATS!!!
Will return 0 for every empty row, but an empty array for every empty column,
thanks to this sum behavior:
>>> sum(array([[]]),1)
array([0])
>>> sum(array([[]]))
zeros((0,), 'l')
"""
if len(a.shape) < 2:
raise ValueError, "Array has to be two-dimensional"
return sum(safe_p_log_p(a), axis=0)
def row_degeneracy(a,cutoff=.5):
"""Returns the number of characters that's needed to cover >= cutoff
a: numpy array
cutoff: number that should be covered in the array
Example:
[ [.1 .3 .4 .2],
[.5 .3 0 .2],
[.8 0 .1 .1]]
if cutoff = .75: row_degeneracy -> [3,2,1]
if cutoff = .95: row_degeneracy -> [4,3,3]
WARNING: watch out with floating point numbers.
if the cutoff= 0.9 and in the array is also 0.9, it might not be found
>>> searchsorted(cumsum(array([.6,.3,.1])),.9)
2
>>> searchsorted(cumsum(array([.5,.4,.1])),.9)
1
If the cutoff value is not found, the result is clipped to the
number of columns in the array.
"""
if not a.any():
return []
try:
b = cumsum(sort(a)[:,::-1],1)
except IndexError:
raise ValueError, "Array has to be two dimensional"
degen = [searchsorted(aln_pos,cutoff) for aln_pos in b]
#degen contains now the indices at which the cutoff was hit
#to change to the number of characters, add 1
return clip(array(degen)+1,0,a.shape[1])
def column_degeneracy(a,cutoff=.5):
"""Returns the number of characters that's needed to cover >= cutoff
a: numpy array
cutoff: number that should be covered in the array
Example:
[ [.1 .8 .3],
[.3 .2 .3],
[.6 0 .4]]
if cutoff = .75: column_degeneracy -> [2,1,3]
if cutoff = .45: column_degeneracy -> [1,1,2]
WARNING: watch out with floating point numbers.
if the cutoff= 0.9 and in the array is also 0.9, it might not be found
>>> searchsorted(cumsum(array([.6,.3,.1])),.9)
2
>>> searchsorted(cumsum(array([.5,.4,.1])),.9)
1
If the cutoff value is not found, the result is clipped to the
number of rows in the array.
"""
if not a.any():
return []
b = cumsum(sort(a,0)[::-1],axis=0)
try:
degen = [searchsorted(b[:,idx],cutoff) for idx in range(len(b[0]))]
except TypeError:
raise ValueError, "Array has to be two dimensional"
#degen contains now the indices at which the cutoff was hit
#to change to the number of characters, add 1
return clip(array(degen)+1,0,a.shape[0])
def hamming_distance(x,y):
"""Returns the Hamming distance between two arrays.
The Hamming distance is the number of characters which differ between
two sequences (arrays).
WARNING: This function truncates the longest array to the length of
the shortest one.
Example:
ABC, ABB -> 1
ABCDEFG, ABCEFGH -> 4
"""
shortest = min(map(len,[x,y]))
return sum(x[:shortest] != y[:shortest], axis=0)
def norm(a):
"""Returns the norm of a matrix or vector
Calculates the Euclidean norm of a vector.
Applies the Frobenius norm function to a matrix
(a.k.a. Euclidian matrix norm)
a = numpy array
"""
return sqrt(sum((a*a).flat))
def euclidean_distance(a,b):
"""Returns the Euclidean distance between two vectors/arrays
a,b: numpy vectors or arrays
WARNING: this method is NOT intended for use on arrays of different
sizes, but no check for this has been built in.
"""
return norm(a-b)
def count_simple(a, alphabet_len):
"""Counts items in a. """
result = zeros(alphabet_len, Int)
for i in ravel(a):
result[i] += 1
return result
def count_alphabet(a, alphabet_len):
"""Counts items in a, using =="""
#ensure behavior is polymorphic with count_simple
if not alphabet_len:
raise IndexError, "alphabet_len must be > 0"
result = zeros(alphabet_len, Int)
a = ravel(a)
for i in range(alphabet_len):
result[i] = sum(a == i)
return result
def is_complex(m):
"""Returns True if m has a complex component."""
return m.dtype.char == 'D'
def is_significantly_complex(m, threshold=0.1):
"""Returns True if the sum of m's imaginary component exceeds threshold."""
if is_complex(m):
if sum(sum(abs(m.imag))) > threshold:
return True
return False
def has_neg_off_diags(m):
"""Returns True if m has negative off-diagonal elements."""
return min(ravel(m * logical_not(identity(len(m))))) < 0
def has_neg_off_diags_naive(m):
"""Returns True if m has off-diagonal elements.
Naive, slow implementation -- don't use. Primarily here to check
correctness of faster implementation.
"""
working = m.copy()
for i in range(len(working)):
working[i][i] = 0
if min(ravel(working)) < 0:
return True
else:
return False
def sum_neg_off_diags(m):
"""Returns sum of negative off-diags in m."""
return sum(compress(ravel(less(m,0)), \
ravel((m * logical_not(identity(len(m)))))))
def sum_neg_off_diags_naive(m):
"""Returns sum of negative off-diags in m.
Naive, slow implementation -- don't use. Primarily here to check correctness
of faster implementation.
"""
sum = 0
for row_i, row in enumerate(m):
for col_i, item in enumerate(row):
if (row_i != col_i) and (item < 0):
sum += item
return sum
def scale_row_sum(m, val=1):
"""Scales matrix in place so that each row sums to val (default: 1).
WARNING: will use 'integer division', not true division, if matrix is
an integer data type.
"""
m /= (sum(m, axis=1)/val)[:,newaxis]
def scale_row_sum_naive(m, val=1):
"""Scales matrix in place so that each row sums to val (default:1).
Naive implementation -- don't use. Primarily here to check correctness.
WARNING: will use 'integer division'.
"""
for row in m:
row_sum = sum(row)
row /= (row_sum / val)
def scale_trace(m, val=-1):
"""Scales matrix in place so that trace of result is val (default: -1).
WARNING: if trace is opposite sign to val, inverts sign of all elements
in the matrix.
WARNING: will use 'integer division', not true division, if matrix is
an integer data type.
"""
m *= val/trace(m)
def abs_diff(first, second):
"""Calculates element-wise sum of abs(first - second).
Return value may be real or complex.
"""
return sum(ravel(abs(first-second)))
def sq_diff(first, second):
"""Calculates element-wise sum of (first - second)**2.
Return value may be real or complex.
"""
diff = first - second
return sum(ravel((diff*diff)))
def norm_diff(first, second):
"""Returns square root of sq_diff, normalized to # elements."""
size = len(ravel(first))
return sqrt(sq_diff(first, second))/size
def without_diag(a):
"""Returns copy of square matrix a, omitting diagonal elements."""
return array([concatenate((r[:i], r[i+1:])) for i, r in enumerate(a)])
def with_diag(a, d):
"""Returns copy of matrix a with d inserted as diagonal to yield square."""
rows, cols = a.shape
result = zeros((rows, cols+1), a.dtype.char)
for i, r in enumerate(a):
result_row = result[i]
result_row[:i] = r[:i]
result_row[i] = d[i]
result_row[i+1:] = r[i:]
return result
def only_nonzero(a):
"""Returns elements of a where the first element of a[i] is nonzero.
Result is a new array and does not share data with the original.
NOTE: This is designed for arrays of rate matrices. If the first element
of the rate matrix is zero, then the row must be all zero (since the row
sums to zero with the first element being equal in magnitude but opposite
in sign to the sum of the other elements). If the row is all zero, then
the rate matrix is almost certainly invalid and should be excluded from
further analyses.
"""
first_element_selector = [0] * len(a.shape)
first_element_selector[0] = slice(None,None)
return take(a, numpy.ravel(nonzero(a[first_element_selector])), axis=0)
def combine_dimensions(m, dim):
"""Aggregates all dimensions of m between dim and the end.
In other words, combine_dimensions(m, 3) flattens the first 3 dimensions.
Similarly, combine_dimensions(m, -2) flattens the last two dimensions.
WARNING: Result shares data with m.
"""
#if we're not combining more than one dimension, return the array unchanged
if abs(dim) <= 1:
return m
#otherwise, figure out the new shape and reshape the array
shape = m.shape
if dim < 0: #counting from end
return reshape(m, shape[:dim] + (product(shape[dim:]),))
else: #counting from start
return reshape(m, (product(shape[:dim]),) + shape[dim:])
def split_dimension(m, dim, shape=None):
"""Splits specified dimension of m into shape.
WARNING: product of terms in shape must match size of dim. For example,
if the length of dim is 12, shape could be (4,3) or (2,6) but not (2,3).
Result shares data with m.
"""
curr_dims = m.shape
num_dims = len(curr_dims)
#if shape not specified, assume it was square
if shape is None:
shape = (sqrt(curr_dims[dim]),)*2
#raise IndexError if index out of bounds
curr_dims[dim]
#fix negative indices
if dim < 0:
dim = num_dims + dim
#extract the relevant region and reshape it
return reshape(m, curr_dims[:dim] + shape + curr_dims[dim+1:])
def non_diag(m):
"""From a sequence of n flattened 2D matrices, returns non-diag elements.
For example, for an array containing 20 9-element row vectors, returns
an array containing 20 6-element row vectors that omit elements 0, 4, and 8.
"""
num_rows, num_elements = m.shape
side_length = int(sqrt(num_elements))
wanted = numpy.ravel(nonzero(logical_not(identity(side_length).flat)))
all_wanted = repeat([wanted], num_rows,axis=0)
all_wanted += (arange(num_rows) * num_elements)[:,newaxis]
return reshape(take(ravel(m), ravel(all_wanted), axis=0), \
(num_rows, num_elements-side_length))
def perturb_one_off_diag(m, mean=0, sd=0.01, element_to_change=None):
"""Perturbs one off-diagonal element of rate matrix m by random number.
mean: mean of distribution to sample from. Default 0.
sd: standard deviation of distribution to sample from. Default 0.05.
Error model is additive.
WARNING: may reverse sign of element in some cases!
WARNING: if an element is specified, the coordinate is relative to the
flat array _without_ the diagonal, _not_ relative to the original array!
e.g. for a 4x4 array, element 8 refers to a[2][3], _not_ a[2][0].
"""
#get the elements that are allowed to change
elements = without_diag(m)
flat = ravel(elements)
#pick an element to change if it wasn't specified
if element_to_change is None:
element_to_change = randint(0, len(flat))
#change the element, pack the elements back into the array, and return
#the result.
flat[element_to_change] += normal(mean, sd)
return with_diag(elements, -sum(elements, 1))
def perturb_one_off_diag_fixed(m, size):
"""Perturbs a random off-diag element of rate matrix m by factor of size."""
elements = without_diag(m)
flat = ravel(elements)
element_to_change = randint(0, len(flat))
flat[element_to_change] *= (1.0 + size)
return with_diag(elements, -sum(elements, 1))
def perturb_off_diag(m, mean=0, sd=0.01):
"""Perturbs all off-diagonal elements of m by adding random number.
mean: mean of distribution to sample from. Default 0.
sd: standard deviation of distribution to sample from. Default 0.01.
WARNING: may reverse sign of element!
"""
elements = without_diag(m)
random = normal(mean, sd, elements.shape)
result = elements + random
return with_diag(result, -sum(result, 1))
def perturb_off_diag_frac(m, size):
"""Perturbs all off-diagonal elements of m by about a specified fraction.
mean: mean of size (relative to each element) of change to make.
Will never reverse sign of an element.
"""
elements = without_diag(m)
random = normal(0, size_to_stdev(size), elements.shape)
result = elements * abs((1.0+random)) #ensure always positive
return with_diag(result, -sum(result, 1))
def size_to_stdev(size):
"""From desired mean deviation, returns sd for N(0,sd).
Uses method of Altman 1993, as described in:
http://www-users.york.ac.uk/~mb55/talks/halfnor.pdf
...where E(X) = sqrt(2*sigma/pi)
"""
return size*size*pi/2.0
def merge_samples(*samples):
"""Merges list of samples into array of [vals,dists].
value of each sample corresponds to its position in the list.
e.g. for [1,2,3] and [4,5,6], result will be:
array([[1,2,3,4,5,6],[0,0,0,1,1,1]])
"""
return concatenate([array((a, zeros(a.shape)+i)) \
for i,a in enumerate(samples)], 1)
def sort_merged_samples_by_value(a):
"""Sorts result of merge_samples by value (i.e. first row)."""
return take(a, argsort(a[0]), 1)
def classifiers(*samples):
"""Returns all 1D classifier separating first sample from the remainder.
Returns [(cut_value, fp, fn, tp, tn) for i in cuts].
"""
if len(samples) <= 1:
raise TypeError, "optimal_classifier needs at least 2 distributions."
vals, labels = sort_merged_samples_by_value(merge_samples(*samples))
n = len(vals)
num_positives = len(samples[0])
num_negatives = n - num_positives
#only want to check indices where the next value is different
to_check = numpy.ravel(nonzero(vals[:-1] - vals[1:]))
result = []
for index in to_check:
i = index+1 #because it changes at the value _after_ the specified index
fp = sum(labels[:i] != 0)
fn = sum(labels[i:] == 0)
tp = num_positives - fn
tn = num_negatives - fp
reversed = tp + tn < fp + fn
if reversed:
tp, tn, fp, fn = fp, fn, tp, tn
result.append((i, reversed, fp, fn, tp, tn))
return result
def minimize_error_count(classifiers):
"""Returns the classifier from a list of classifiers that minimizes errors.
Errors are defined as #fp + # fn.
If multiple classifiers have equal scores, returns an arbitrary one.
"""
c = array(classifiers)
return classifiers[argmin(sum(c[:,2:4],1))]
def minimize_error_rate(classifiers):
"""Returns the classifier from a list of classifiers that minimizes errors.
Errors are defined as (#fp/#p) + (# fn/#n).
If multiple classifiers have equal scores, returns an arbitrary one.
"""
c = array(classifiers)
return classifiers[argmin(\
1.0*c[:,2]/(c[:,2]+c[:,5])+1.0*c[:,3]/(c[:,3]+c[:,4]))]
def mutate_array(a, sd, mean=0):
"""Return mutated copy of the array (or vector), adding mean +/- sd."""
return a + normal(mean, sd, a.shape)
|