/usr/share/pyshared/cogent/util/table.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 | #!/usr/bin/env python
"""
A light-weight Table class for manipulating 2D data and representing it as text, or writing to file for import into other packages.
Current output formats include pickle (pythons serialisation format), restructured text (keyed by 'rest'), latex, html, delimited columns, and a simple text format.
Table can read pickled and delimited formats.
"""
from __future__ import division
import cPickle, csv
from gzip import GzipFile
import numpy
from cogent.format import table as table_format, bedgraph
from cogent.util.dict_array import DictArray
__author__ = "Gavin Huttley"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Gavin Huttley", "Felix Schill"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
# making reversed characters for use in reverse order sorting
_all_chrs = [chr(i) for i in range(256)]
_all_chrs.reverse()
_reversed_chrs = ''.join(_all_chrs)
def convert2DDict(twoDdict, header = None, row_order = None):
"""Returns a 2 dimensional list.
Arguments:
- twoDdict: a 2 dimensional dict with top level keys corresponding to
column headings, lower level keys correspond to row headings but are
not preserved.
- header: series with column headings. If not provided, the sorted top
level dict keys are used.
- row_order: a specified order to generate the rows.
"""
if not header:
header = twoDdict.keys()
header.sort()
if not row_order: # we assume rows consistent across dict
row_order = twoDdict[header[0]].keys()
row_order.sort()
# make twoD list
table = []
for row in row_order:
string_row = []
for column in header:
string_row.append(twoDdict[column][row])
table.append(string_row)
return table
class _Header(list):
"""a convenience class for storing the Header"""
def __new__(cls, arg):
n = list.__new__(cls, list(arg))
return n
def __setslice__(self, *args):
"""disallowed"""
raise RuntimeError("Table Header is immutable, use withNewHeader")
def __setitem__(self, *args):
"""disallowed"""
raise RuntimeError("Table Header is immutable, use withNewHeader")
class Table(DictArray):
def __init__(self, header = None, rows = None, row_order = None, digits = 4,
space = 4, title = '', missing_data = '', max_width = 1e100,
row_ids = False, legend = '', column_templates = None,
dtype = None):
"""
Arguments:
- header: column headings
- rows: a 2D dict, list or tuple. If a dict, it must have column
headings as top level keys, and common row labels as keys in each
column.
- row_order: the order in which rows will be pulled from the twoDdict
- digits: floating point resolution
- space: number of spaces between columns or a string
- title: as implied
- missing_data: character assigned if a row has no entry for a column
- max_width: maximum column width for printing
- row_ids: if True, the 0'th column is used as row identifiers and keys
for slicing.
- legend: table legend
- column_templates: dict of column headings: string format templates
or a function that will handle the formatting.
- dtype: optional numpy array typecode.
"""
try:
num_cols = len(header)
assert num_cols > 0
if type(rows) == numpy.ndarray:
assert num_cols == rows.shape[1]
elif type(rows) == dict:
assert num_cols == len(rows)
else:
assert num_cols == len(rows[0])
except (IndexError, TypeError, AssertionError):
raise RuntimeError("header and rows must be provided to Table")
header = [str(head) for head in header]
if isinstance(rows, dict):
rows = convert2DDict(rows, header = header,
row_order = row_order)
# if row_ids, we select that column as the row identifiers
if row_ids:
identifiers = [row[0] for row in rows]
else:
identifiers = len(rows)
if not dtype:
dtype = "O"
DictArray.__init__(self, rows, identifiers, header, dtype = dtype)
# forcing all column headings to be strings
self._header = _Header([str(head) for head in header])
self._missing_data = missing_data
self.Title = str(title)
self.Legend = str(legend)
try:
self.Space = ' ' * space
except TypeError:
self.Space = space
self._digits = digits
self._row_ids = row_ids
self._max_width = max_width
# some attributes are not preserved in any file format, so always based
# on args
self._column_templates = column_templates or {}
def __repr__(self):
row = []
try:
for val in self.array[0][:3]:
if isinstance(val, float):
row.append('%.4f' % val)
elif isinstance(val, int):
row.append('%d' % val)
else:
row.append('%r' % val)
except IndexError:
# an empty table
pass
row_trunc = ', '.join(row)
header_trunc = ', '.join(map(repr, self.Header[:3]))
if self.Shape[1] > 3:
header_trunc = '[%s,..]' % header_trunc
row_trunc = '[%s,..]' % row_trunc
else:
header_trunc = '[%s]' % header_trunc
row_trunc = '[%s]' % row_trunc
if self.Shape[0] > 1:
row_trunc = '[%s,..]' % row_trunc
else:
row_trunc = '[[%s]]' % row_trunc
if self.Shape[0] == 0:
row_trunc = str([])
result = 'Table(numrows=%s, numcols=%s, header=%s, rows=%s)' % \
(self.Shape[0], self.Shape[1], header_trunc, row_trunc)
return result
def __str__(self):
return self.tostring()
def __getitem__(self, names):
(index, remaining) = self.template.interpretIndex(names)
# if we have two integers, return a single value
ints = [isinstance(idx, int) for idx in index]
if len(ints) == 2 and min(ints):
return self.array[index]
new_index = list(index)
for i, idx in enumerate(new_index):
if isinstance(idx, int):
new_index[i] = slice(idx, idx+1, None)
index = tuple(new_index)
rows = self.array[index]
result = None
if len(index) > 1:
header = numpy.asarray(self.Header, dtype="O")[index[1:]]
else:
header = self.Header
if remaining is not None:
kwargs = self._get_persistent_attrs()
result = self.__class__(header, rows, **kwargs)
return result
def __getstate__(self):
data = self._get_persistent_attrs()
del(data['column_templates'])
data.update(dict(header = self.Header, rows = self.getRawData()))
return data
def __setstate__(self, data):
limit_ids = data.pop('limit_ids', None)
if limit_ids is not None:
data['row_ids'] = limit_ids or False
new = Table(**data)
self.__dict__.update(new.__dict__)
return self
def _get_header(self):
"""returns Header value"""
return self._header
def _set_header(self, data):
"""disallowed"""
raise RuntimeError("not allowed to set the Header")
Header = property(_get_header, _set_header)
def withNewHeader(self, old, new, **kwargs):
"""returns a new Table with old header labels replaced by new
Arguments:
- old: the old column header(s). Can be a string or series of
them.
- new: the new column header(s). Can be a string or series of
them.
"""
if type(old) == str:
old = [old]
new = [new]
assert len(old) == len(new), 'Mismatched number of old/new labels'
indices = map(self.Header.index, old)
new_header = list(self.Header)
for i in range(len(old)):
new_header[indices[i]] = new[i]
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = new_header, rows = self.getRawData(), **kw)
def _get_persistent_attrs(self):
kws = dict(row_ids = self._row_ids, title = self.Title,
legend = self.Legend, digits = self._digits,
space = self.Space, max_width = self._max_width,
missing_data = self._missing_data,
column_templates = self._column_templates or None)
return kws
def setColumnFormat(self, column_head, format_template):
"""Provide a formatting template for a named column.
Arguments:
- column_head: the column label.
- format_template: string formatting template or a function that
will handle the formatting.
"""
assert column_head in self.Header, \
"Unknown column heading %s" % column_head
self._column_templates[column_head] = format_template
def tostring(self, borders=True, sep=None, format='', **kwargs):
"""Return the table as a formatted string.
Arguments:
- format: possible formats are 'rest', 'latex', 'html', 'phylip',
'bedgraph', or simple text (default).
- sep: A string separator for delineating columns, e.g. ',' or '\t'.
Overrides format.
NOTE: If format is bedgraph, assumes that column headers are chrom,
start, end, value. In that order!
"""
if format.lower() == 'phylip':
missing_data = "%.4f" % 0.0
else:
missing_data = self._missing_data
# convert self to a 2D list
formatted_table = self.array.tolist()
if format != 'bedgraph':
header, formatted_table = table_format.formattedCells(formatted_table,
self.Header,
digits = self._digits,
column_templates = self._column_templates,
missing_data = missing_data)
args = (header, formatted_table, self.Title, self.Legend)
if sep and format != 'bedgraph':
return table_format.separatorFormat(*args + (sep,))
elif format == 'rest':
return table_format.gridTableFormat(*args)
elif format.endswith('tex'):
caption = None
if self.Title or self.Legend:
caption = " ".join([self.Title or "", self.Legend or ""])
return table_format.latex(formatted_table, header,
caption = caption, **kwargs)
elif format == 'html':
rest = table_format.gridTableFormat(*args)
return table_format.html(rest)
elif format == 'phylip':
# need to eliminate row identifiers
formatted_table = [row[self._row_ids:] for row in formatted_table]
header = header[self._row_ids:]
return table_format.phylipMatrix(formatted_table, header)
elif format == 'bedgraph':
assert self.Shape[1] == 4, 'bedgraph format is for 4 column tables'
# assuming that header order is chrom, start, end, val
formatted_table = bedgraph.bedgraph(self.sorted().array.tolist(),
**kwargs)
return formatted_table
else:
return table_format.simpleFormat(*args + (self._max_width,
self._row_ids, borders, self.Space))
def toRichHtmlTable(self, row_cell_func=None, header_cell_func=None,
element_formatters={}, merge_identical=True, compact=True):
"""returns just the table html code.
Arguments:
- row_cell_func: callback function that formats the row values. Must
take the row value and coordinates (row index, column index).
- header_cell_func: callback function that formats the column headings
must take the header label value and coordinate
- element_formatters: a dictionary of specific callback funcs for
formatting individual html table elements.
e.g. {'table': lambda x: '<table border="1" class="docutils">'}
- merge_identical: cells within a row are merged to one span.
"""
formatted_table = self.array.tolist()
header, formatted_table = table_format.formattedCells(formatted_table,
self.Header,
digits = self._digits,
column_templates = self._column_templates,
missing_data = self._missing_data)
# but we strip the cell spacing
header = [v.strip() for v in header]
rows = [[c.strip() for c in r] for r in formatted_table]
return table_format.rich_html(rows, row_cell_func=row_cell_func,
header=header,
header_cell_func=header_cell_func,
element_formatters=element_formatters,
compact=compact)
def writeToFile(self, filename, mode = 'w', writer = None, format = None,
sep = None, compress=None, **kwargs):
"""Write table to filename in the specified format. If a format is not
specified, it attempts to use a filename suffix. Note if a sep argument
is provided, unformatted values are written to file in order to preserve
numerical accuracy.
Arguments:
- mode: file opening mode
- format: Valid formats are those of the tostring method plus
pickle.
- writer: a function for formatting the data for output.
- sep: a character delimiter for fields.
- compress: if True, gzips the file and appends .gz to the
filename (if not already added).
"""
compress = compress or filename.endswith('.gz')
if compress:
if not filename.endswith('.gz'):
filename = '%s.gz' % filename
mode = ['wb', mode][mode == 'w']
outfile = GzipFile(filename, mode)
else:
outfile = file(filename, mode)
if format is None:
# try guessing from filename suffix
if compress:
index = -2
else:
index = -1
suffix = filename.split('.')
if len(suffix) > 1:
format = suffix[index]
if writer:
rows = self.getRawData()
rows.insert(0, self.Header[:])
rows = writer(rows, has_header=True)
outfile.writelines("\n".join(rows))
elif format == 'pickle':
data = self.__getstate__()
cPickle.dump(data, outfile)
elif sep is not None and format != 'bedgraph':
writer = csv.writer(outfile, delimiter = sep)
if self.Title:
writer.writerow([self.Title])
writer.writerow(self.Header)
writer.writerows(self.array)
if self.Legend:
writer.writerow([self.Legend])
else:
table = self.tostring(format = format, **kwargs)
outfile.writelines(table + '\n')
outfile.close()
def toBedgraph(self, chrom_col, start_col, end_col):
"""docstring for toBedgraph"""
pass
def appended(self, new_column, *tables, **kwargs):
"""Append an arbitrary number of tables to the end of this one.
Returns a new table object. Optional keyword arguments to the new
tables constructor may be passed.
Arguments:
- new_column: provide a heading for the new column, each tables
title will be placed in it. If value is false, the result is no
additional column."""
# convert series of tables
if isinstance(tables[0], tuple) or isinstance(tables[0], list):
tables = tuple(tables[0])
# for each table, determine it's number of rows and create an equivalent
# length vector of its title
if new_column:
header = [new_column] + self.Header
else:
header = self.Header
big_twoD = ()
table_series = (self,) + tables
for table in table_series:
# check compatible tables
assert self.Header == table.Header, \
"Inconsistent tables -- column headings are not the same."
new_twoD = []
for row in table:
if new_column:
new_twoD.append([table.Title] + row.asarray().tolist())
else:
new_twoD.append(row.asarray().tolist())
new_twoD = tuple(new_twoD)
big_twoD += new_twoD
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header, big_twoD, **kw)
def getRawData(self, columns = None):
"""Returns raw data as a 1D or 2D list of rows from columns. If one
column, its a 1D list.
Arguments:
- columns: if None, all data are returned"""
if columns is None:
return self.array.tolist()
if isinstance(columns, str):
# assumes all column headings are strings.
columns = (columns,)
column_indices = map(self.Header.index, columns)
result = self.array.take(column_indices, axis=1)
if len(columns) == 1:
result = result.flatten()
return result.tolist()
def _callback(self, callback, row, columns=None, num_columns=None):
if callable(callback):
row_segment = row.take(columns)
if num_columns == 1:
row_segment = row_segment[0]
return callback(row_segment)
else:
return eval(callback, {}, row)
def filtered(self, callback, columns=None, **kwargs):
"""Returns a sub-table of rows for which the provided callback
function returns True when passed row data from columns. Row data
is a 1D list if more than one column, raw row[col] value otherwise.
Arguments:
- columns: the columns whose values determine whether a row is to
be included.
- callback: Can be a function, which takes the sub-row delimited
by columns and returns True/False, or a string representing valid
python code to be evaluated."""
if isinstance(columns, str):
columns = (columns,)
if columns:
num_columns = len(columns)
else:
num_columns = None
row_indexes = []
if not callable(callback):
data = self
cols = columns
else:
data = self.array
cols = map(self.Header.index, columns)
for rdex, row in enumerate(data):
if self._callback(callback, row, cols, num_columns):
row_indexes.append(rdex)
sub_set = numpy.take(self, row_indexes, 0)
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = self.Header, rows = sub_set, **kw)
def filteredByColumn(self, callback, **kwargs):
"""Returns a table with columns identified by callback
Arguments:
- callback: A function which takes the columns delimited
by columns and returns True/False, or a string representing valid
python code to be evaluated."""
data = self.array.transpose()
column_indices = []
append = column_indices.append
for index, row in enumerate(data):
if callback(row):
append(index)
columns = numpy.take(self.Header, column_indices)
return self.getColumns(columns, **kwargs)
def count(self, callback, columns=None, **kwargs):
"""Returns number of rows for which the provided callback
function returns True when passed row data from columns. Row data
is a 1D list if more than one column, raw row[col] value otherwise.
Arguments:
- columns: the columns whose values determine whether a row is to
be included.
- callback: Can be a function, which takes the sub-row delimited
by columns and returns True/False, or a string representing valid
python code to be evaluated."""
if isinstance(columns, str):
columns = (columns,)
if columns:
num_columns = len(columns)
else:
num_columns = None
count = 0
if not callable(callback):
data = self
cols = columns
else:
data = self.array
cols = map(self.Header.index, columns)
for row in data:
if self._callback(callback, row, cols, num_columns):
count += 1
return count
def sorted(self, columns = None, reverse = None, **kwargs):
"""Returns a new table sorted according to columns order.
Arguments:
- columns: column headings, their order determines the sort order.
- reverse: column headings, these columns will be reverse sorted.
Either can be provided as just a single string, or a series of
strings.
"""
if columns is None:
columns = self.Header
elif isinstance(columns, str):
columns = [columns]
indices = [self.Header.index(col) for col in columns]
if not reverse:
is_reversed = [False] * len(columns)
reverse_indices = []
else:
if type(reverse) == str:
reverse = [reverse]
reverse_indices = []
for index, header_index in enumerate(indices):
col = self.Header[header_index]
if col in reverse:
reverse_indices += [index]
is_reversed = [col in reverse for col in columns]
reverse_indices = numpy.array(reverse_indices)
dtypes = [(self.Header[i], self.array.dtype) for i in indices]
# applying the decorate-sort-undecorate approach
aux_list = self.array.take(indices, axis=1)
# we figure out the casting funcs for any reversed elements
cast = []
for index in reverse_indices:
val = aux_list[0, index]
try:
val = val.translate(_reversed_chrs)
func = lambda x: x.translate(_reversed_chrs)
except AttributeError:
func = lambda x: x * -1
func = numpy.vectorize(func)
aux_list[:, index] = func(aux_list[:, index])
aux_list = numpy.rec.fromarrays(aux_list.copy().T, dtype=dtypes)
indices = aux_list.argsort()
new_twoD = self.array.take(indices, axis=0)
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = self.Header, rows = new_twoD, **kw)
def getColumns(self, columns, **kwargs):
"""Return a slice of columns"""
# check whether we have integer columns
if isinstance(columns, str):
columns = [columns]
is_int = min([isinstance(val, int) for val in columns])
indexes = []
if is_int:
indexes = columns
else:
indexes = [self.Header.index(head) for head in columns]
if self._row_ids:
# we disallow reordering of identifiers, and ensure they are only
# presented once
for val in range(self._row_ids):
try:
indexes.remove(val)
except ValueError:
pass
indexes = range(self._row_ids) + indexes
columns = numpy.take(numpy.asarray(self.Header, dtype="O"),
indexes)
new = numpy.take(self.array, indexes, axis=1)
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = columns, rows = new, **kw)
def getDisjointRows(self, rows, **kwargs):
"""Return the nominated disjoint rows."""
if isinstance(rows, str):
rows = [rows]
indexes = []
for row in rows:
idx, drop = self.template.interpretIndex(row)
indexes.append(idx[0])
new = self.array.take(indexes, axis=0)
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = self.Header, rows = new, **kw)
def withNewColumn(self, new_column, callback, columns = None, **kwargs):
"""Returns a new table with an additional column, computed using
callback.
Arguments:
- new_column: new column heading
- columns: the columns whose values determine whether a row is to
be included.
- callback: Can be a function, which takes the sub-row delimited
by columns and returns True/False, or a string representing valid
python code to be evaluated."""
if isinstance(columns, str):
columns = (columns,)
if columns is not None:
num_columns = len(columns)
else:
num_columns = None
if not callable(callback):
data = self
cols = columns
else:
data = self.array
cols = map(self.Header.index, columns)
twoD = [list(row) + [self._callback(callback, row, cols,
num_columns)] for row in data]
kw = self._get_persistent_attrs()
kw.update(kwargs)
return Table(header = self.Header + [new_column], rows = twoD, **kw)
def getDistinctValues(self, column):
"""returns the set of distinct values for the named column(s)"""
columns = [column, [column]][type(column) == str]
data = self.getRawData(column)
if len(columns) > 1:
data = [tuple(row) for row in data]
return set(data)
def joined(self, other_table, columns_self=None, columns_other=None,
inner_join=True, **kwargs):
"""returns a new table containing the join of this table and
other_table. Default behaviour is the natural inner join. Checks for
equality in the specified columns (if provided) or all columns; a
combined row is included in the output if all indices match exactly. A
combined row contains first the row of this table, and then columns
from the other_table that are not key columns (i.e. not specified in
columns_other). The order (of self, then other)
is preserved. The column headers of the output are made unique by
replacing the headers of other_table with
<other_table.Title>_<other_table.Header>.
Arguments:
- other_table: A table object which will be joined with this
table. other_table must have a title.
- columns_self, columns_other: indices of key columns that will
be compared in the join operation. Can be either column index,
or a string matching the column header. The order matters, and
the dimensions of columns_self and columns_other have to match.
A row will be included in the output iff
self[row][columns_self[i]]==other_table[row][columns_other[i]]
for all i
- inner_join: if False, the outer join of the two tables is
returned.
"""
if other_table.Title is None:
raise RuntimeError, "Cannot join if a other_table.Title is None"
elif self.Title == other_table.Title:
raise RuntimeError, "Cannot join if a table.Title's are equal"
columns_self = [columns_self,[columns_self]][type(columns_self)==str]
columns_other = [columns_other,
[columns_other]][type(columns_other)==str]
if not inner_join:
assert columns_self is None and columns_other is None, "Cannot "\
"specify column indices for an outer join"
columns_self = []
columns_other = []
if columns_self is None and columns_other is None:
# we do the natural inner join
columns_self=[]
columns_other=[]
for col_head in self.Header:
if col_head in other_table.Header:
columns_self.append(self.Header.index(col_head))
columns_other.append(other_table.Header.index(col_head))
elif columns_self is None or columns_other is None:
# the same column labels will be used for both tables
columns_self = columns_self or columns_other
columns_other = columns_self or columns_other
elif len(columns_self)!=len(columns_other):
raise RuntimeError("Error during table join: key columns have "\
"different dimensions!")
# create new 2d list for the output
joined_table=[]
#resolve column indices from Header, if necessary
columns_self_indices=[]
columns_other_indices=[]
for col in columns_self:
if type(col)==int:
columns_self_indices.append(col)
else:
columns_self_indices.append(self.Header.index(col))
for col in columns_other:
if type(col)==int:
columns_other_indices.append(col)
else:
columns_other_indices.append(other_table.Header.index(col))
# create a mask of which columns of the other_table will end up in the
# output
output_mask_other=[]
for col in range(0,len(other_table.Header)):
if not (col in columns_other_indices):
output_mask_other.append(col)
# use a dictionary for the key lookup
# key dictionary for other_table.
# key is a tuple made from specified columns; data is the row index
# for lookup...
key_lookup={}
row_index=0
for row in other_table:
#insert new entry for each row
key=tuple([row[col] for col in columns_other_indices])
if key in key_lookup:
key_lookup[key].append(row_index)
else:
key_lookup[key]=[row_index]
row_index=row_index+1
for this_row in self:
# assemble key for query of other_table
key=tuple([this_row[col] for col in columns_self_indices])
if key in key_lookup:
for output_row_index in key_lookup[key]:
other_row=[other_table[output_row_index,c] \
for c in output_mask_other]
joined_table.append(list(this_row) + other_row)
new_header=self.Header+[other_table.Title+"_"+other_table.Header[c] \
for c in output_mask_other]
if not joined_table:
# YUK, this is to stop dimension check in DictArray causing
# failures
joined_table = numpy.empty((0,len(new_header)))
return Table(header=new_header, rows=joined_table, **kwargs)
def summed(self, indices=None, col_sum=True, strict=True, **kwargs):
"""returns the sum of numerical values for column(s)/row(s)
Arguments:
- indices: column name(s) or indices or row indices
- col_sum: sums values in the indicated column, the default. If
False, returns the row sum.
- strict: if False, ignores cells with non-numeric data in the
column/row."""
all = indices is None
if type(indices) == str:
assert col_sum, "Must use row integer indices"
indices = self.Header.index(indices)
elif type(indices) == int: # a single index
indices = [indices]
elif not all:
raise RuntimeError("unknown indices type: %s" % indices)
if not all:
vals = self.array.take([indices], axis=[0,1][col_sum]).flatten()
if strict:
result = vals.sum()
else:
result = sum(v for v in vals if type(v)!=str)
else:
# a multi-rowed result
if col_sum:
vals = self.array
else:
vals = self.array.transpose()
if strict:
result = vals.sum(axis=0).tolist()
else:
result = []
append = result.append
# we need to iterate over the elements to be summed, so we
# have to transpose
for row in vals.transpose():
try:
num = row.sum()
except TypeError:
num = sum(r for r in row if type(r) != str)
append(num)
return result
def normalized(self, by_row=True, denominator_func=None, **kwargs):
"""returns a table with elements expressed as a fraction according
to the results from func
Arguments:
- by_row: normalisation done by row
- denominator_func: a callback function that takes an array and
returns a value to be used as the denominator. Default is sum."""
if denominator_func:
data = self.array
if not by_row:
data = data.transpose()
denominators = [denominator_func(row) for row in data]
else:
denominators = self.summed(col_sum=not by_row)
if by_row:
values = self.array
else:
values = self.array.transpose()
rows = [values[i]/denom for i, denom in enumerate(denominators)]
rows = numpy.array(rows)
if not by_row:
rows = rows.transpose()
return Table(header=self.Header, rows=rows, **kwargs)
def transposed(self, new_column_name, select_as_header=None, **kwargs):
"""returns the transposed table.
Arguments:
- new_column_name: the existing header will become a column with
this name
- select_as_header: current column name containing data to be used
as the header. Defaults to the first column.
"""
select_as_header = select_as_header or self.Header[0]
assert select_as_header in self.Header, \
'"%s" not in table Header' % select_as_header
raw_data = self.getRawData()
raw_data.insert(0, self.Header)
transposed = numpy.array(raw_data, dtype='O')
transposed = transposed.transpose()
# indices for the header and non header rows
header_index = self.Header.index(select_as_header)
data_indices = range(0, header_index)+range(header_index+1,
len(transposed))
header = list(numpy.take(transposed, [header_index], axis=0)[0])
header = [new_column_name]+header[1:] # [1:] slice excludes old name
rows = numpy.take(transposed, data_indices, axis=0)
return Table(header=header, rows=rows, **kwargs)
|