This file is indexed.

/usr/lib/python2.7/dist-packages/cryptography/hazmat/backends/openssl/backend.py is in python-cryptography 0.6.1-1+deb8u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import collections
import itertools
import warnings
from contextlib import contextmanager

import six

from cryptography import utils
from cryptography.exceptions import (
    InternalError, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import (
    CMACBackend, CipherBackend, DSABackend, EllipticCurveBackend, HMACBackend,
    HashBackend, PBKDF2HMACBackend, PEMSerializationBackend,
    PKCS8SerializationBackend, RSABackend,
    TraditionalOpenSSLSerializationBackend
)
from cryptography.hazmat.backends.openssl.ciphers import (
    _AESCTRCipherContext, _CipherContext
)
from cryptography.hazmat.backends.openssl.cmac import _CMACContext
from cryptography.hazmat.backends.openssl.dsa import (
    _DSAParameters, _DSAPrivateKey, _DSAPublicKey,
    _DSASignatureContext, _DSAVerificationContext
)
from cryptography.hazmat.backends.openssl.ec import (
    _EllipticCurvePrivateKey, _EllipticCurvePublicKey
)
from cryptography.hazmat.backends.openssl.hashes import _HashContext
from cryptography.hazmat.backends.openssl.hmac import _HMACContext
from cryptography.hazmat.backends.openssl.rsa import (
    _RSAPrivateKey, _RSAPublicKey, _RSASignatureContext,
    _RSAVerificationContext
)
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
    MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.ciphers.algorithms import (
    AES, ARC4, Blowfish, CAST5, Camellia, IDEA, SEED, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
    CBC, CFB, CFB8, CTR, ECB, GCM, OFB
)


_MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"])
_OpenSSLError = collections.namedtuple("_OpenSSLError",
                                       ["code", "lib", "func", "reason"])


@utils.register_interface(CipherBackend)
@utils.register_interface(CMACBackend)
@utils.register_interface(DSABackend)
@utils.register_interface(EllipticCurveBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(PKCS8SerializationBackend)
@utils.register_interface(RSABackend)
@utils.register_interface(TraditionalOpenSSLSerializationBackend)
@utils.register_interface(PEMSerializationBackend)
class Backend(object):
    """
    OpenSSL API binding interfaces.
    """
    name = "openssl"

    def __init__(self):
        self._binding = Binding()
        self._ffi = self._binding.ffi
        self._lib = self._binding.lib

        self._binding.init_static_locks()

        # adds all ciphers/digests for EVP
        self._lib.OpenSSL_add_all_algorithms()
        # registers available SSL/TLS ciphers and digests
        self._lib.SSL_library_init()
        # loads error strings for libcrypto and libssl functions
        self._lib.SSL_load_error_strings()

        self._cipher_registry = {}
        self._register_default_ciphers()
        self.activate_osrandom_engine()

    def activate_builtin_random(self):
        # Obtain a new structural reference.
        e = self._lib.ENGINE_get_default_RAND()
        if e != self._ffi.NULL:
            self._lib.ENGINE_unregister_RAND(e)
            # Reset the RNG to use the new engine.
            self._lib.RAND_cleanup()
            # decrement the structural reference from get_default_RAND
            res = self._lib.ENGINE_finish(e)
            assert res == 1

    def activate_osrandom_engine(self):
        # Unregister and free the current engine.
        self.activate_builtin_random()
        # Fetches an engine by id and returns it. This creates a structural
        # reference.
        e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
        assert e != self._ffi.NULL
        # Initialize the engine for use. This adds a functional reference.
        res = self._lib.ENGINE_init(e)
        assert res == 1
        # Set the engine as the default RAND provider.
        res = self._lib.ENGINE_set_default_RAND(e)
        assert res == 1
        # Decrement the structural ref incremented by ENGINE_by_id.
        res = self._lib.ENGINE_free(e)
        assert res == 1
        # Decrement the functional ref incremented by ENGINE_init.
        res = self._lib.ENGINE_finish(e)
        assert res == 1
        # Reset the RNG to use the new engine.
        self._lib.RAND_cleanup()

    def openssl_version_text(self):
        """
        Friendly string name of the loaded OpenSSL library. This is not
        necessarily the same version as it was compiled against.

        Example: OpenSSL 1.0.1e 11 Feb 2013
        """
        return self._ffi.string(
            self._lib.SSLeay_version(self._lib.SSLEAY_VERSION)
        ).decode("ascii")

    def create_hmac_ctx(self, key, algorithm):
        return _HMACContext(self, key, algorithm)

    def hash_supported(self, algorithm):
        digest = self._lib.EVP_get_digestbyname(algorithm.name.encode("ascii"))
        return digest != self._ffi.NULL

    def hmac_supported(self, algorithm):
        return self.hash_supported(algorithm)

    def create_hash_ctx(self, algorithm):
        return _HashContext(self, algorithm)

    def cipher_supported(self, cipher, mode):
        if self._evp_cipher_supported(cipher, mode):
            return True
        elif isinstance(mode, CTR) and isinstance(cipher, AES):
            return True
        else:
            return False

    def _evp_cipher_supported(self, cipher, mode):
        try:
            adapter = self._cipher_registry[type(cipher), type(mode)]
        except KeyError:
            return False
        evp_cipher = adapter(self, cipher, mode)
        return self._ffi.NULL != evp_cipher

    def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
        if (cipher_cls, mode_cls) in self._cipher_registry:
            raise ValueError("Duplicate registration for: {0} {1}.".format(
                cipher_cls, mode_cls)
            )
        self._cipher_registry[cipher_cls, mode_cls] = adapter

    def _register_default_ciphers(self):
        for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8]:
            self.register_cipher_adapter(
                AES,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CTR, ECB, OFB, CFB]:
            self.register_cipher_adapter(
                Camellia,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CFB, CFB8, OFB]:
            self.register_cipher_adapter(
                TripleDES,
                mode_cls,
                GetCipherByName("des-ede3-{mode.name}")
            )
        self.register_cipher_adapter(
            TripleDES,
            ECB,
            GetCipherByName("des-ede3")
        )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                Blowfish,
                mode_cls,
                GetCipherByName("bf-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                SEED,
                mode_cls,
                GetCipherByName("seed-{mode.name}")
            )
        for cipher_cls, mode_cls in itertools.product(
            [CAST5, IDEA],
            [CBC, OFB, CFB, ECB],
        ):
            self.register_cipher_adapter(
                cipher_cls,
                mode_cls,
                GetCipherByName("{cipher.name}-{mode.name}")
            )
        self.register_cipher_adapter(
            ARC4,
            type(None),
            GetCipherByName("rc4")
        )
        self.register_cipher_adapter(
            AES,
            GCM,
            GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
        )

    def create_symmetric_encryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)

    def create_symmetric_decryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)

    def pbkdf2_hmac_supported(self, algorithm):
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            return self.hmac_supported(algorithm)
        else:
            # OpenSSL < 1.0.0 has an explicit PBKDF2-HMAC-SHA1 function,
            # so if the PBKDF2_HMAC function is missing we only support
            # SHA1 via PBKDF2_HMAC_SHA1.
            return isinstance(algorithm, hashes.SHA1)

    def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
                           key_material):
        buf = self._ffi.new("char[]", length)
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            evp_md = self._lib.EVP_get_digestbyname(
                algorithm.name.encode("ascii"))
            assert evp_md != self._ffi.NULL
            res = self._lib.PKCS5_PBKDF2_HMAC(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                evp_md,
                length,
                buf
            )
            assert res == 1
        else:
            if not isinstance(algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This version of OpenSSL only supports PBKDF2HMAC with "
                    "SHA1.",
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._lib.PKCS5_PBKDF2_HMAC_SHA1(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                length,
                buf
            )
            assert res == 1

        return self._ffi.buffer(buf)[:]

    def _err_string(self, code):
        err_buf = self._ffi.new("char[]", 256)
        self._lib.ERR_error_string_n(code, err_buf, 256)
        return self._ffi.string(err_buf, 256)[:]

    def _consume_errors(self):
        errors = []
        while True:
            code = self._lib.ERR_get_error()
            if code == 0:
                break

            lib = self._lib.ERR_GET_LIB(code)
            func = self._lib.ERR_GET_FUNC(code)
            reason = self._lib.ERR_GET_REASON(code)

            errors.append(_OpenSSLError(code, lib, func, reason))
        return errors

    def _unknown_error(self, error):
        return InternalError(
            "Unknown error code {0} from OpenSSL, "
            "you should probably file a bug. {1}.".format(
                error.code, self._err_string(error.code)
            )
        )

    def _bn_to_int(self, bn):
        if six.PY3:
            # Python 3 has constant time from_bytes, so use that.

            bn_num_bytes = (self._lib.BN_num_bits(bn) + 7) // 8
            bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
            bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
            assert bin_len > 0
            assert bin_ptr != self._ffi.NULL
            return int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")

        else:
            # Under Python 2 the best we can do is hex()

            hex_cdata = self._lib.BN_bn2hex(bn)
            assert hex_cdata != self._ffi.NULL
            hex_str = self._ffi.string(hex_cdata)
            self._lib.OPENSSL_free(hex_cdata)
            return int(hex_str, 16)

    def _int_to_bn(self, num, bn=None):
        """
        Converts a python integer to a BIGNUM. The returned BIGNUM will not
        be garbage collected (to support adding them to structs that take
        ownership of the object). Be sure to register it for GC if it will
        be discarded after use.
        """

        if bn is None:
            bn = self._ffi.NULL

        if six.PY3:
            # Python 3 has constant time to_bytes, so use that.

            binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
            bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
            assert bn_ptr != self._ffi.NULL
            return bn_ptr

        else:
            # Under Python 2 the best we can do is hex()

            hex_num = hex(num).rstrip("L").lstrip("0x").encode("ascii") or b"0"
            bn_ptr = self._ffi.new("BIGNUM **")
            bn_ptr[0] = bn
            res = self._lib.BN_hex2bn(bn_ptr, hex_num)
            assert res != 0
            assert bn_ptr[0] != self._ffi.NULL
            return bn_ptr[0]

    def generate_rsa_private_key(self, public_exponent, key_size):
        rsa._verify_rsa_parameters(public_exponent, key_size)

        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)

        bn = self._int_to_bn(public_exponent)
        bn = self._ffi.gc(bn, self._lib.BN_free)

        res = self._lib.RSA_generate_key_ex(
            rsa_cdata, key_size, bn, self._ffi.NULL
        )
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def generate_rsa_parameters_supported(self, public_exponent, key_size):
        return (public_exponent >= 3 and public_exponent & 1 != 0 and
                key_size >= 512)

    def load_rsa_private_numbers(self, numbers):
        rsa._check_private_key_components(
            numbers.p,
            numbers.q,
            numbers.d,
            numbers.dmp1,
            numbers.dmq1,
            numbers.iqmp,
            numbers.public_numbers.e,
            numbers.public_numbers.n
        )
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.p = self._int_to_bn(numbers.p)
        rsa_cdata.q = self._int_to_bn(numbers.q)
        rsa_cdata.d = self._int_to_bn(numbers.d)
        rsa_cdata.dmp1 = self._int_to_bn(numbers.dmp1)
        rsa_cdata.dmq1 = self._int_to_bn(numbers.dmq1)
        rsa_cdata.iqmp = self._int_to_bn(numbers.iqmp)
        rsa_cdata.e = self._int_to_bn(numbers.public_numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.public_numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def load_rsa_public_numbers(self, numbers):
        rsa._check_public_key_components(numbers.e, numbers.n)
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.e = self._int_to_bn(numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPublicKey(self, rsa_cdata)

    def _bytes_to_bio(self, data):
        """
        Return a _MemoryBIO namedtuple of (BIO, char*).

        The char* is the storage for the BIO and it must stay alive until the
        BIO is finished with.
        """
        data_char_p = self._ffi.new("char[]", data)
        bio = self._lib.BIO_new_mem_buf(
            data_char_p, len(data)
        )
        assert bio != self._ffi.NULL

        return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_char_p)

    def _evp_pkey_to_private_key(self, evp_pkey):
        """
        Return the appropriate type of PrivateKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPrivateKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPrivateKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePrivateKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _evp_pkey_to_public_key(self, evp_pkey):
        """
        Return the appropriate type of PublicKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPublicKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPublicKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePublicKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _pem_password_cb(self, password):
        """
        Generate a pem_password_cb function pointer that copied the password to
        OpenSSL as required and returns the number of bytes copied.

        typedef int pem_password_cb(char *buf, int size,
                                    int rwflag, void *userdata);

        Useful for decrypting PKCS8 files and so on.

        Returns a tuple of (cdata function pointer, callback function).
        """

        def pem_password_cb(buf, size, writing, userdata):
            pem_password_cb.called += 1

            if not password:
                pem_password_cb.exception = TypeError(
                    "Password was not given but private key is encrypted."
                )
                return 0
            elif len(password) < size:
                pw_buf = self._ffi.buffer(buf, size)
                pw_buf[:len(password)] = password
                return len(password)
            else:
                pem_password_cb.exception = ValueError(
                    "Passwords longer than {0} bytes are not supported "
                    "by this backend.".format(size - 1)
                )
                return 0

        pem_password_cb.called = 0
        pem_password_cb.exception = None

        return (
            self._ffi.callback("int (char *, int, int, void *)",
                               pem_password_cb),
            pem_password_cb
        )

    def _rsa_cdata_from_private_key(self, private_key):
        ctx = self._lib.RSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.RSA_free)

        ctx.p = self._int_to_bn(private_key.p)
        ctx.q = self._int_to_bn(private_key.q)
        ctx.d = self._int_to_bn(private_key.d)
        ctx.e = self._int_to_bn(private_key.e)
        ctx.n = self._int_to_bn(private_key.n)
        ctx.dmp1 = self._int_to_bn(private_key.dmp1)
        ctx.dmq1 = self._int_to_bn(private_key.dmq1)
        ctx.iqmp = self._int_to_bn(private_key.iqmp)
        res = self._lib.RSA_blinding_on(ctx, self._ffi.NULL)
        assert res == 1

        return ctx

    def _rsa_cdata_from_public_key(self, public_key):
        ctx = self._lib.RSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.RSA_free)

        ctx.e = self._int_to_bn(public_key.e)
        ctx.n = self._int_to_bn(public_key.n)
        res = self._lib.RSA_blinding_on(ctx, self._ffi.NULL)
        assert res == 1

        return ctx

    def create_rsa_signature_ctx(self, private_key, padding, algorithm):
        warnings.warn(
            "create_rsa_signature_ctx is deprecated and will be removed in a "
            "future version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        rsa_cdata = self._rsa_cdata_from_private_key(private_key)
        key = _RSAPrivateKey(self, rsa_cdata)
        return _RSASignatureContext(self, key, padding, algorithm)

    def create_rsa_verification_ctx(self, public_key, signature, padding,
                                    algorithm):
        warnings.warn(
            "create_rsa_verification_ctx is deprecated and will be removed in "
            "a future version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        rsa_cdata = self._rsa_cdata_from_public_key(public_key)
        key = _RSAPublicKey(self, rsa_cdata)
        return _RSAVerificationContext(self, key, signature, padding,
                                       algorithm)

    def mgf1_hash_supported(self, algorithm):
        warnings.warn(
            "mgf1_hash_supported is deprecated and will be removed in "
            "a future version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        return self._mgf1_hash_supported(algorithm)

    def _mgf1_hash_supported(self, algorithm):
        if self._lib.Cryptography_HAS_MGF1_MD:
            return self.hash_supported(algorithm)
        else:
            return isinstance(algorithm, hashes.SHA1)

    def rsa_padding_supported(self, padding):
        if isinstance(padding, PKCS1v15):
            return True
        elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1):
            return self._mgf1_hash_supported(padding._mgf._algorithm)
        elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1):
            return isinstance(padding._mgf._algorithm, hashes.SHA1)
        else:
            return False

    def generate_dsa_parameters(self, key_size):
        if key_size not in (1024, 2048, 3072):
            raise ValueError(
                "Key size must be 1024 or 2048 or 3072 bits.")

        if (self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f and
                key_size > 1024):
            raise ValueError(
                "Key size must be 1024 because OpenSSL < 1.0.0 doesn't "
                "support larger key sizes.")

        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)

        res = self._lib.DSA_generate_parameters_ex(
            ctx, key_size, self._ffi.NULL, 0,
            self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
        )

        assert res == 1

        return _DSAParameters(self, ctx)

    def generate_dsa_private_key(self, parameters):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        if isinstance(parameters, dsa.DSAParameters):
            ctx.p = self._int_to_bn(parameters.p)
            ctx.q = self._int_to_bn(parameters.q)
            ctx.g = self._int_to_bn(parameters.g)
        else:
            ctx.p = self._lib.BN_dup(parameters._dsa_cdata.p)
            ctx.q = self._lib.BN_dup(parameters._dsa_cdata.q)
            ctx.g = self._lib.BN_dup(parameters._dsa_cdata.g)

        self._lib.DSA_generate_key(ctx)

        return _DSAPrivateKey(self, ctx)

    def generate_dsa_private_key_and_parameters(self, key_size):
        parameters = self.generate_dsa_parameters(key_size)
        return self.generate_dsa_private_key(parameters)

    def create_dsa_signature_ctx(self, private_key, algorithm):
        warnings.warn(
            "create_dsa_signature_ctx is deprecated and will be removed in "
            "a future version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        dsa_cdata = self._dsa_cdata_from_private_key(private_key)
        key = _DSAPrivateKey(self, dsa_cdata)
        return _DSASignatureContext(self, key, algorithm)

    def create_dsa_verification_ctx(self, public_key, signature,
                                    algorithm):
        warnings.warn(
            "create_dsa_verification_ctx is deprecated and will be removed in "
            "a future version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        dsa_cdata = self._dsa_cdata_from_public_key(public_key)
        key = _DSAPublicKey(self, dsa_cdata)
        return _DSAVerificationContext(self, key, signature, algorithm)

    def load_dsa_private_numbers(self, numbers):
        dsa._check_dsa_private_numbers(numbers)
        parameter_numbers = numbers.public_numbers.parameter_numbers

        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.public_numbers.y)
        dsa_cdata.priv_key = self._int_to_bn(numbers.x)

        return _DSAPrivateKey(self, dsa_cdata)

    def load_dsa_public_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers.parameter_numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.y)

        return _DSAPublicKey(self, dsa_cdata)

    def load_dsa_parameter_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.g)

        return _DSAParameters(self, dsa_cdata)

    def _dsa_cdata_from_public_key(self, public_key):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        parameters = public_key.parameters()
        ctx.p = self._int_to_bn(parameters.p)
        ctx.q = self._int_to_bn(parameters.q)
        ctx.g = self._int_to_bn(parameters.g)
        ctx.pub_key = self._int_to_bn(public_key.y)
        return ctx

    def _dsa_cdata_from_private_key(self, private_key):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        parameters = private_key.parameters()
        ctx.p = self._int_to_bn(parameters.p)
        ctx.q = self._int_to_bn(parameters.q)
        ctx.g = self._int_to_bn(parameters.g)
        ctx.priv_key = self._int_to_bn(private_key.x)
        ctx.pub_key = self._int_to_bn(private_key.y)
        return ctx

    def dsa_hash_supported(self, algorithm):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return isinstance(algorithm, hashes.SHA1)
        else:
            return self.hash_supported(algorithm)

    def dsa_parameters_supported(self, p, q, g):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return (utils.bit_length(p) <= 1024 and utils.bit_length(q) <= 160)
        else:
            return True

    def decrypt_rsa(self, private_key, ciphertext, padding):
        warnings.warn(
            "decrypt_rsa is deprecated and will be removed in a future "
            "version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        rsa_cdata = self._rsa_cdata_from_private_key(private_key)
        key = _RSAPrivateKey(self, rsa_cdata)
        return key.decrypt(ciphertext, padding)

    def encrypt_rsa(self, public_key, plaintext, padding):
        warnings.warn(
            "encrypt_rsa is deprecated and will be removed in a future "
            "version.",
            utils.DeprecatedIn05,
            stacklevel=2
        )
        rsa_cdata = self._rsa_cdata_from_public_key(public_key)
        key = _RSAPublicKey(self, rsa_cdata)
        return key.encrypt(plaintext, padding)

    def cmac_algorithm_supported(self, algorithm):
        return (
            self._lib.Cryptography_HAS_CMAC == 1
            and self.cipher_supported(algorithm, CBC(
                b"\x00" * algorithm.block_size))
        )

    def create_cmac_ctx(self, algorithm):
        return _CMACContext(self, algorithm)

    def load_pem_private_key(self, data, password):
        return self._load_key(
            self._lib.PEM_read_bio_PrivateKey,
            self._evp_pkey_to_private_key,
            data,
            password,
        )

    def load_pem_public_key(self, data):
        return self._load_key(
            self._lib.PEM_read_bio_PUBKEY,
            self._evp_pkey_to_public_key,
            data,
            None,
        )

    def load_traditional_openssl_pem_private_key(self, data, password):
        warnings.warn(
            "load_traditional_openssl_pem_private_key is deprecated and will "
            "be removed in a future version, use load_pem_private_key "
            "instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def load_pkcs8_pem_private_key(self, data, password):
        warnings.warn(
            "load_pkcs8_pem_private_key is deprecated and will be removed in a"
            " future version, use load_pem_private_key instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def _load_key(self, openssl_read_func, convert_func, data, password):
        mem_bio = self._bytes_to_bio(data)

        password_callback, password_func = self._pem_password_cb(password)

        evp_pkey = openssl_read_func(
            mem_bio.bio,
            self._ffi.NULL,
            password_callback,
            self._ffi.NULL
        )

        if evp_pkey == self._ffi.NULL:
            if password_func.exception is not None:
                errors = self._consume_errors()
                assert errors
                raise password_func.exception
            else:
                self._handle_key_loading_error()

        evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)

        if password is not None and password_func.called == 0:
            raise TypeError(
                "Password was given but private key is not encrypted.")

        assert (
            (password is not None and password_func.called == 1) or
            password is None
        )

        return convert_func(evp_pkey)

    def _handle_key_loading_error(self):
        errors = self._consume_errors()

        if not errors:
            raise ValueError("Could not unserialize key data.")

        elif errors[0][1:] in (
            (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_DECRYPTFINAL_EX,
                self._lib.EVP_R_BAD_DECRYPT
            ),
            (
                self._lib.ERR_LIB_PKCS12,
                self._lib.PKCS12_F_PKCS12_PBE_CRYPT,
                self._lib.PKCS12_R_PKCS12_CIPHERFINAL_ERROR,
            )
        ):
            raise ValueError("Bad decrypt. Incorrect password?")

        elif errors[0][1:] in (
            (
                self._lib.ERR_LIB_PEM,
                self._lib.PEM_F_PEM_GET_EVP_CIPHER_INFO,
                self._lib.PEM_R_UNSUPPORTED_ENCRYPTION
            ),

            (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_PBE_CIPHERINIT,
                self._lib.EVP_R_UNKNOWN_PBE_ALGORITHM
            )
        ):
            raise UnsupportedAlgorithm(
                "PEM data is encrypted with an unsupported cipher",
                _Reasons.UNSUPPORTED_CIPHER
            )

        elif any(
            error[1:] == (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_PKCS82PKEY,
                self._lib.EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM
            )
            for error in errors
        ):
            raise UnsupportedAlgorithm(
                "Unsupported public key algorithm.",
                _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
            )

        else:
            assert errors[0][1] in (
                self._lib.ERR_LIB_EVP,
                self._lib.ERR_LIB_PEM,
                self._lib.ERR_LIB_ASN1,
            )
            raise ValueError("Could not unserialize key data.")

    def elliptic_curve_supported(self, curve):
        if self._lib.Cryptography_HAS_EC != 1:
            return False

        try:
            curve_nid = self._elliptic_curve_to_nid(curve)
        except UnsupportedAlgorithm:
            curve_nid = self._lib.NID_undef

        ctx = self._lib.EC_GROUP_new_by_curve_name(curve_nid)

        if ctx == self._ffi.NULL:
            errors = self._consume_errors()
            assert (
                curve_nid == self._lib.NID_undef or
                errors[0][1:] == (
                    self._lib.ERR_LIB_EC,
                    self._lib.EC_F_EC_GROUP_NEW_BY_CURVE_NAME,
                    self._lib.EC_R_UNKNOWN_GROUP
                )
            )
            return False
        else:
            assert curve_nid != self._lib.NID_undef
            self._lib.EC_GROUP_free(ctx)
            return True

    def elliptic_curve_signature_algorithm_supported(
        self, signature_algorithm, curve
    ):
        if self._lib.Cryptography_HAS_EC != 1:
            return False

        # We only support ECDSA right now.
        if not isinstance(signature_algorithm, ec.ECDSA):
            return False

        # Before 0.9.8m OpenSSL can't cope with digests longer than the curve.
        if (
            self._lib.OPENSSL_VERSION_NUMBER < 0x009080df and
            curve.key_size < signature_algorithm.algorithm.digest_size * 8
        ):
            return False

        return self.elliptic_curve_supported(curve)

    def generate_elliptic_curve_private_key(self, curve):
        """
        Generate a new private key on the named curve.
        """

        if self.elliptic_curve_supported(curve):
            curve_nid = self._elliptic_curve_to_nid(curve)

            ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

            res = self._lib.EC_KEY_generate_key(ec_cdata)
            assert res == 1

            res = self._lib.EC_KEY_check_key(ec_cdata)
            assert res == 1

            return _EllipticCurvePrivateKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm(
                "Backend object does not support {0}.".format(curve.name),
                _Reasons.UNSUPPORTED_ELLIPTIC_CURVE
            )

    def elliptic_curve_private_key_from_numbers(self, numbers):
        warnings.warn(
            "elliptic_curve_private_key_from_numbers is deprecated and will "
            "be removed in a future version.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_elliptic_curve_private_numbers(numbers)

    def load_elliptic_curve_private_numbers(self, numbers):
        public = numbers.public_numbers

        curve_nid = self._elliptic_curve_to_nid(public.curve)

        ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
        assert ec_cdata != self._ffi.NULL
        ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

        ec_cdata = self._ec_key_set_public_key_affine_coordinates(
            ec_cdata, public.x, public.y)

        res = self._lib.EC_KEY_set_private_key(
            ec_cdata, self._int_to_bn(numbers.private_value))
        assert res == 1

        return _EllipticCurvePrivateKey(self, ec_cdata)

    def elliptic_curve_public_key_from_numbers(self, numbers):
        warnings.warn(
            "elliptic_curve_public_key_from_numbers is deprecated and will be "
            "removed in a future version.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_elliptic_curve_public_numbers(numbers)

    def load_elliptic_curve_public_numbers(self, numbers):
        curve_nid = self._elliptic_curve_to_nid(numbers.curve)

        ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
        assert ec_cdata != self._ffi.NULL
        ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

        ec_cdata = self._ec_key_set_public_key_affine_coordinates(
            ec_cdata, numbers.x, numbers.y)

        return _EllipticCurvePublicKey(self, ec_cdata)

    def _elliptic_curve_to_nid(self, curve):
        """
        Get the NID for a curve name.
        """

        curve_aliases = {
            "secp192r1": "prime192v1",
            "secp256r1": "prime256v1"
        }

        curve_name = curve_aliases.get(curve.name, curve.name)

        curve_nid = self._lib.OBJ_sn2nid(curve_name.encode())
        if curve_nid == self._lib.NID_undef:
            raise UnsupportedAlgorithm(
                "{0} is not a supported elliptic curve".format(curve.name),
                _Reasons.UNSUPPORTED_ELLIPTIC_CURVE
            )
        return curve_nid

    @contextmanager
    def _tmp_bn_ctx(self):
        bn_ctx = self._lib.BN_CTX_new()
        assert bn_ctx != self._ffi.NULL
        bn_ctx = self._ffi.gc(bn_ctx, self._lib.BN_CTX_free)
        self._lib.BN_CTX_start(bn_ctx)
        try:
            yield bn_ctx
        finally:
            self._lib.BN_CTX_end(bn_ctx)

    def _ec_key_determine_group_get_set_funcs(self, ctx):
        """
        Given an EC_KEY determine the group and what methods are required to
        get/set point coordinates.
        """
        assert ctx != self._ffi.NULL

        nid_two_field = self._lib.OBJ_sn2nid(b"characteristic-two-field")
        assert nid_two_field != self._lib.NID_undef

        group = self._lib.EC_KEY_get0_group(ctx)
        assert group != self._ffi.NULL

        method = self._lib.EC_GROUP_method_of(group)
        assert method != self._ffi.NULL

        nid = self._lib.EC_METHOD_get_field_type(method)
        assert nid != self._lib.NID_undef

        if nid == nid_two_field and self._lib.Cryptography_HAS_EC2M:
            set_func = self._lib.EC_POINT_set_affine_coordinates_GF2m
            get_func = self._lib.EC_POINT_get_affine_coordinates_GF2m
        else:
            set_func = self._lib.EC_POINT_set_affine_coordinates_GFp
            get_func = self._lib.EC_POINT_get_affine_coordinates_GFp

        assert set_func and get_func

        return set_func, get_func, group

    def _ec_key_set_public_key_affine_coordinates(self, ctx, x, y):
        """
        This is a port of EC_KEY_set_public_key_affine_coordinates that was
        added in 1.0.1.

        Sets the public key point in the EC_KEY context to the affine x and y
        values.
        """

        bn_x = self._int_to_bn(x)
        bn_y = self._int_to_bn(y)

        set_func, get_func, group = (
            self._ec_key_determine_group_get_set_funcs(ctx)
        )

        point = self._lib.EC_POINT_new(group)
        assert point != self._ffi.NULL
        point = self._ffi.gc(point, self._lib.EC_POINT_free)

        with self._tmp_bn_ctx() as bn_ctx:
            check_x = self._lib.BN_CTX_get(bn_ctx)
            check_y = self._lib.BN_CTX_get(bn_ctx)

            res = set_func(group, point, bn_x, bn_y, bn_ctx)
            assert res == 1

            res = get_func(group, point, check_x, check_y, bn_ctx)
            assert res == 1

            assert (
                self._lib.BN_cmp(bn_x, check_x) == 0 and
                self._lib.BN_cmp(bn_y, check_y) == 0
            )

        res = self._lib.EC_KEY_set_public_key(ctx, point)
        assert res == 1

        res = self._lib.EC_KEY_check_key(ctx)
        assert res == 1

        return ctx


class GetCipherByName(object):
    def __init__(self, fmt):
        self._fmt = fmt

    def __call__(self, backend, cipher, mode):
        cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower()
        return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))


backend = Backend()