This file is indexed.

/usr/share/pyshared/fabio/OXDimage.py is in python-fabio 0.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python
#coding: utf8
"""
Reads Oxford Diffraction Sapphire 3 images

Authors:
........
* Henning O. Sorensen & Erik Knudsen:
  Center for Fundamental Research: Metal Structures in Four Dimensions;
  Risoe National Laboratory;
  Frederiksborgvej 399;
  DK-4000 Roskilde;
  email:erik.knudsen@risoe.dk
* Jon Wright, Jérôme Kieffer & Gaël Goret:
  European Synchrotron Radiation Facility;
  Grenoble (France)

"""

# Get ready for python3:
from __future__ import with_statement, print_function

import time, logging, struct
logger = logging.getLogger("OXDimage")
import numpy
from .fabioimage import fabioimage
from .compression import decTY1, compTY1

try:
    from numpy import rad2deg, deg2rad
except ImportError: #naive implementation for very old numpy (v1.0.1 on MacOSX from Risoe)
    rad2deg = lambda x: 180.0 * x / numpy.pi
    deg2rad = lambda x: x * numpy.pi / 180.

DETECTOR_TYPES = {0: 'Sapphire/KM4CCD (1x1: 0.06mm, 2x2: 0.12mm)',
1: 'Sapphire2-Kodak (1x1: 0.06mm, 2x2: 0.12mm)',
2: 'Sapphire3-Kodak (1x1: 0.03mm, 2x2: 0.06mm, 4x4: 0.12mm)',
3: 'Onyx-Kodak (1x1: 0.06mm, 2x2: 0.12mm, 4x4: 0.24mm)',
4: 'Unknown Oxford diffraction detector'}

DEFAULT_HEADERS = {'Header Version':  'OD SAPPHIRE  3.0',
                   'Compression': "TY1",
                   'Header Size In Bytes': 5120,
                   "ASCII Section size in Byte": 256,
                   "General Section size in Byte": 512,
                   "Special Section size in Byte": 768,
                   "KM4 Section size in Byte": 1024,
                   "Statistic Section in Byte": 512,
                   "History Section in Byte": 2048,
                   'NSUPPLEMENT':0
                   }

class OXDimage(fabioimage):
    """
    Oxford Diffraction Sapphire 3 images reader/writer class
    """
    def _readheader(self, infile):

        infile.seek(0)

        # Ascii header part 256 byes long
        self.header['Header Version'] = infile.readline()[:-2]
        block = infile.readline()
        self.header['Compression'] = block[12:15]
        block = infile.readline()
        self.header['NX'] = int(block[3:7])
        self.header['NY'] = int(block[11:15])
        self.header['OI'] = int(block[19:26])
        self.header['OL'] = int(block[30:37])
        block = infile.readline()
        self.header['Header Size In Bytes'] = int(block[8:15])
        self.header['General Section size in Byte'] = int(block[19:26])
        self.header['Special Section size in Byte'] = int(block[30:37])
        self.header['KM4 Section size in Byte'] = int(block[41:48])
        self.header['Statistic Section in Byte'] = int(block[52:59])
        self.header['History Section in Byte'] = int(block[63:])
        block = infile.readline()
        self.header['NSUPPLEMENT'] = int(block[12:19])
        block = infile.readline()
        self.header['Time'] = block[5:29]
        self.header["ASCII Section size in Byte"] = self.header['Header Size In Bytes']\
                                                - self.header['General Section size in Byte']\
                                                - self.header['Special Section size in Byte'] \
                                                - self.header['KM4 Section size in Byte']\
                                                - self.header['Statistic Section in Byte']\
                                                - self.header['History Section in Byte']\
        # Skip to general section (NG) 512 byes long <<<<<<"
        infile.seek(self.header["ASCII Section size in Byte"])
        block = infile.read(self.header['General Section size in Byte'])
        self.header['Binning in x'] = numpy.fromstring(block[0:2], numpy.uint16)[0]
        self.header['Binning in y'] = numpy.fromstring(block[2:4], numpy.uint16)[0]
        self.header['Detector size x'] = numpy.fromstring(block[22:24], numpy.uint16)[0]
        self.header['Detector size y'] = numpy.fromstring(block[24:26], numpy.uint16)[0]
        self.header['Pixels in x'] = numpy.fromstring(block[26:28], numpy.uint16)[0]
        self.header['Pixels in y'] = numpy.fromstring(block[28:30], numpy.uint16)[0]
        self.header['No of pixels'] = numpy.fromstring(block[36:40], numpy.uint32)[0]

        # Speciel section (NS) 768 bytes long
        block = infile.read(self.header['Special Section size in Byte'])
        self.header['Gain'] = numpy.fromstring(block[56:64], numpy.float)[0]
        self.header['Overflows flag'] = numpy.fromstring(block[464:466], numpy.int16)[0]
        self.header['Overflow after remeasure flag'] = numpy.fromstring(block[466:468], numpy.int16)[0]
        self.header['Overflow threshold'] = numpy.fromstring(block[472:476], numpy.int32)[0]
        self.header['Exposure time in sec'] = numpy.fromstring(block[480:488], numpy.float)[0]
        self.header['Overflow time in sec'] = numpy.fromstring(block[488:496], numpy.float)[0]
        self.header['Monitor counts of raw image 1'] = numpy.fromstring(block[528:532], numpy.int32)[0]
        self.header['Monitor counts of raw image 2'] = numpy.fromstring(block[532:536], numpy.int32)[0]
        self.header['Monitor counts of overflow raw image 1'] = numpy.fromstring(block[536:540], numpy.int32)[0]
        self.header['Monitor counts of overflow raw image 2'] = numpy.fromstring(block[540:544], numpy.int32)[0]
        self.header['Unwarping'] = numpy.fromstring(block[544:548], numpy.int32)[0]
        self.header['Detector type'] = DETECTOR_TYPES[numpy.fromstring(block[548:552], numpy.int32)[0]]
        self.header['Real pixel size x (mm)'] = numpy.fromstring(block[568:576], numpy.float)[0]
        self.header['Real pixel size y (mm)'] = numpy.fromstring(block[576:584], numpy.float)[0]

        # KM4 goniometer section (NK) 1024 bytes long
        block = infile.read(self.header['KM4 Section size in Byte'])
        # Spatial correction file
        self.header['Spatial correction file'] = block[26:272].strip("\x00")
        self.header['Spatial correction file date'] = block[0:26].strip("\x00")
        # Angles are in steps due to stepper motors - conversion factor RAD
        # angle[0] = omega, angle[1] = theta, angle[2] = kappa, angle[3] = phi,   
        start_angles_step = numpy.fromstring(block[284:304], numpy.int32)
        end_angles_step = numpy.fromstring(block[324:344], numpy.int32)
        step2rad = numpy.fromstring(block[368:408], numpy.float)
        step_angles_deg = rad2deg(step2rad)
        # calc angles
        start_angles_deg = start_angles_step * step_angles_deg
        end_angles_deg = end_angles_step * step_angles_deg
        self.header['Omega start in deg'] = start_angles_deg[0]
        self.header['Theta start in deg'] = start_angles_deg[1]
        self.header['Kappa start in deg'] = start_angles_deg[2]
        self.header['Phi start in deg'] = start_angles_deg[3]
        self.header['Omega end in deg'] = end_angles_deg[0]
        self.header['Theta end in deg'] = end_angles_deg[1]
        self.header['Kappa end in deg'] = end_angles_deg[2]
        self.header['Phi end in deg'] = end_angles_deg[3]
        self.header['Omega step in deg'] = step_angles_deg[0]
        self.header['Theta step in deg'] = step_angles_deg[1]
        self.header['Kappa step in deg'] = step_angles_deg[2]
        self.header['Phi step in deg'] = step_angles_deg[3]


        zero_correction_soft_step = numpy.fromstring(block[512:532], numpy.int32)
        zero_correction_soft_deg = zero_correction_soft_step * step_angles_deg
        self.header['Omega zero corr. in deg'] = zero_correction_soft_deg[0]
        self.header['Theta zero corr. in deg'] = zero_correction_soft_deg[1]
        self.header['Kappa zero corr. in deg'] = zero_correction_soft_deg[2]
        self.header['Phi zero corr. in deg'] = zero_correction_soft_deg[3]
        # Beam rotation about e2,e3
        self.header['Beam rot in deg (e2)'] = numpy.fromstring(block[552:560], numpy.float)[0]
        self.header['Beam rot in deg (e3)'] = numpy.fromstring(block[560:568], numpy.float)[0]
        # Wavelenghts alpha1, alpha2, beta
        self.header['Wavelength alpha1'] = numpy.fromstring(block[568:576], numpy.float)[0]
        self.header['Wavelength alpha2'] = numpy.fromstring(block[576:584], numpy.float)[0]
        self.header['Wavelength alpha'] = numpy.fromstring(block[584:592], numpy.float)[0]
        self.header['Wavelength beta'] = numpy.fromstring(block[592:600], numpy.float)[0]

        # Detector tilts around e1,e2,e3 in deg
        self.header['Detector tilt e1 in deg'] = numpy.fromstring(block[640:648], numpy.float)[0]
        self.header['Detector tilt e2 in deg'] = numpy.fromstring(block[648:656], numpy.float)[0]
        self.header['Detector tilt e3 in deg'] = numpy.fromstring(block[656:664], numpy.float)[0]


        # Beam center
        self.header['Beam center x'] = numpy.fromstring(block[664:672], numpy.float)[0]
        self.header['Beam center y'] = numpy.fromstring(block[672:680], numpy.float)[0]
        # Angle (alpha) between kappa rotation axis and e3 (ideally 50 deg)
        self.header['Alpha angle in deg'] = numpy.fromstring(block[672:680], numpy.float)[0]
        # Angle (beta) between phi rotation axis and e3 (ideally 0 deg)
        self.header['Beta angle in deg'] = numpy.fromstring(block[672:680], numpy.float)[0]

        # Detector distance
        self.header['Distance in mm'] = numpy.fromstring(block[712:720], numpy.float)[0]
        # Statistics section (NS) 512 bytes long
        block = infile.read(self.header['Statistic Section in Byte'])
        self.header['Stat: Min '] = numpy.fromstring(block[0:4], numpy.int32)[0]
        self.header['Stat: Max '] = numpy.fromstring(block[4:8], numpy.int32)[0]
        self.header['Stat: Average '] = numpy.fromstring(block[24:32], numpy.float)[0]
        self.header['Stat: Stddev '] = numpy.sqrt(numpy.fromstring(block[32:40], numpy.float)[0])
        self.header['Stat: Skewness '] = numpy.fromstring(block[40:48], numpy.float)[0]

        # History section (NH) 2048 bytes long
        block = infile.read(self.header['History Section in Byte'])
        self.header['Flood field image'] = block[99:126].strip("\x00")

    def read(self, fname, frame=None):
        """
        Read in header into self.header and
            the data   into self.data
        """
        self.header = {}
        self.resetvals()
        infile = self._open(fname)
        self._readheader(infile)

        infile.seek(self.header['Header Size In Bytes'])

        # Compute image size
        try:
            self.dim1 = int(self.header['NX'])
            self.dim2 = int(self.header['NY'])
        except:
            raise Exception("Oxford  file", str(fname) + \
                                "is corrupt, cannot read it")
        #
        if self.header['Compression'] == 'TY1':
            #Compressed with the KM4CCD compression
            raw8 = infile.read(self.dim1 * self.dim2)
            raw16 = None
            raw32 = None
            if self.header['OI'] > 0:
                raw16 = infile.read(self.header['OI'] * 2)
            if self.header['OL'] > 0:
                raw32 = infile.read(self.header['OL'] * 4)
            #DEBUG stuff ... 
            self.raw8 = raw8
            self.raw16 = raw16
            self.raw32 = raw32
            #END DEBUG
            block = decTY1(raw8, raw16, raw32)
            bytecode = block.dtype

        else:
            bytecode = numpy.int32
            self.bpp = len(numpy.array(0, bytecode).tostring())
            ReadBytes = self.dim1 * self.dim2 * self.bpp
            block = numpy.fromstring(infile.read(ReadBytes), bytecode)

        logger.debug('OVER_SHORT2: %s', block.dtype)
        logger.debug("%s" % (block < 0).sum())
        infile.close()
        logger.debug("BYTECODE: %s", bytecode)
        self.data = block.reshape((self.dim2, self.dim1))
        self.bytecode = self.data.dtype.type
        self.pilimage = None
        return self

    def _writeheader(self):
        """
        @return a string containing the header for Oxford images
        """
        linesep = "\r\n"
        for key in DEFAULT_HEADERS:
            if key not in self.header_keys:
                self.header_keys.append(key)
                self.header[key] = DEFAULT_HEADERS[key]

        if "NX" not in self.header.keys() or "NY" not in self.header.keys():
            self.header['NX'] = self.dim1
            self.header['NY'] = self.dim2
        ascii_headers = [self.header['Header Version'],
                       "COMPRESSION=%s (%5.1f)" % (self.header["Compression"], self.getCompressionRatio()),
                       "NX=%4i NY=%4i OI=%7i OL=%7i " % (self.header["NX"], self.header["NY"], self.header["OI"], self.header["OL"]),
                       "NHEADER=%7i NG=%7i NS=%7i NK=%7i NS=%7i NH=%7i" % (self.header['Header Size In Bytes'],
                                                                                 self.header['General Section size in Byte'],
                                                                                 self.header['Special Section size in Byte'],
                                                                                 self.header['KM4 Section size in Byte'],
                                                                                 self.header['Statistic Section in Byte'],
                                                                                 self.header['History Section in Byte']),
                        "NSUPPLEMENT=%7i" % (self.header["NSUPPLEMENT"])]
        if "Time" in self.header:
            ascii_headers.append("TIME=%s" % self.header["Time"])
        else:

            ascii_headers.append("TIME=%s" % time.ctime())

        header = (linesep.join(ascii_headers)).ljust(256)


        NG = Section(self.header['General Section size in Byte'], self.header)
        NG.setData('Binning in x', 0, numpy.uint16)
        NG.setData('Binning in y', 2, numpy.uint16)
        NG.setData('Detector size x', 22, numpy.uint16)
        NG.setData('Detector size y', 24, numpy.uint16)
        NG.setData('Pixels in x', 26, numpy.uint16)
        NG.setData('Pixels in y', 28, numpy.uint16)
        NG.setData('No of pixels', 36, numpy.uint32)
        header += NG.__repr__()

        NS = Section(self.header['Special Section size in Byte'], self.header)
        NS.setData('Gain', 56, numpy.float)
        NS.setData('Overflows flag', 464, numpy.int16)
        NS.setData('Overflow after remeasure flag', 466, numpy.int16)
        NS.setData('Overflow threshold', 472, numpy.int32)
        NS.setData('Exposure time in sec', 480, numpy.float)
        NS.setData('Overflow time in sec', 488, numpy.float)
        NS.setData('Monitor counts of raw image 1', 528, numpy.int32)
        NS.setData('Monitor counts of raw image 2', 532, numpy.int32)
        NS.setData('Monitor counts of overflow raw image 1', 536, numpy.int32)
        NS.setData('Monitor counts of overflow raw image 2', 540, numpy.int32)
        NS.setData('Unwarping', 544, numpy.int32)
        if 'Detector type' in  self.header:
            for key, value in  DETECTOR_TYPES.items():
                if value == self.header['Detector type']:
                    NS.setData(None, 548, numpy.int32, default=key)
        NS.setData('Real pixel size x (mm)', 568, numpy.float)
        NS.setData('Real pixel size y (mm)', 576, numpy.float)
        header += NS.__repr__()

        KM = Section(self.header['KM4 Section size in Byte'], self.header)
        KM.setData('Spatial correction file date', 0, "|S26")
        KM.setData('Spatial correction file', 26, "|S246")
        # Angles are in steps due to stepper motors - conversion factor RAD
        # angle[0] = omega, angle[1] = theta, angle[2] = kappa, angle[3] = phi,
        if self.header.get('Omega step in deg', None):
            KM.setData(None, 368, numpy.float64, deg2rad(self.header["Omega step in deg"]))
            if self.header.get('Omega start in deg', None):
                KM.setData(None, 284, numpy.int32, self.header["Omega start in deg"] / self.header["Omega step in deg"])
            if self.header.get('Omega end in deg', None):
                KM.setData(None, 324, numpy.int32, self.header["Omega end in deg"] / self.header["Omega step in deg"])
            if self.header.get('Omega zero corr. in deg', None):
                KM.setData(None, 512, numpy.int32, self.header['Omega zero corr. in deg'] / self.header["Omega step in deg"])

        if self.header.get('Theta step in deg', None):
            KM.setData(None, 368 + 8, numpy.float64, deg2rad(self.header["Theta step in deg"]))
            if self.header.get('Theta start in deg', None):
                KM.setData(None, 284 + 4, numpy.int32, self.header["Theta start in deg"] / self.header["Theta step in deg"])
            if self.header.get('Theta end in deg', None):
                KM.setData(None, 324 + 4, numpy.int32, self.header["Theta end in deg"] / self.header["Theta step in deg"])
            if self.header.get('Theta zero corr. in deg', None):
                KM.setData(None, 512 + 4, numpy.int32, self.header['Theta zero corr. in deg'] / self.header["Theta step in deg"])

        if self.header.get('Kappa step in deg', None):
            KM.setData(None, 368 + 16, numpy.float64, deg2rad(self.header["Kappa step in deg"]))
            if self.header.get('Kappa start in deg', None):
                KM.setData(None, 284 + 8, numpy.int32, self.header["Kappa start in deg"] / self.header["Kappa step in deg"])
            if self.header.get('Kappa end in deg', None):
                KM.setData(None, 324 + 8, numpy.int32, self.header["Kappa end in deg"] / self.header["Kappa step in deg"])
            if self.header.get('Kappa zero corr. in deg', None):
                KM.setData(None, 512 + 8, numpy.int32, self.header['Kappa zero corr. in deg'] / self.header["Kappa step in deg"])

        if self.header.get('Phi step in deg', None):
            KM.setData(None, 368 + 24, numpy.float64, deg2rad(self.header["Phi step in deg"]))
            if self.header.get('Phi start in deg', None):
                KM.setData(None, 284 + 12, numpy.int32, self.header["Phi start in deg"] / self.header["Phi step in deg"])
            if self.header.get('Phi end in deg', None):
                KM.setData(None, 324 + 12, numpy.int32, self.header["Phi end in deg"] / self.header["Phi step in deg"])
            if self.header.get('Phi zero corr. in deg', None):
                KM.setData(None, 512 + 12, numpy.int32, self.header['Phi zero corr. in deg'] / self.header["Phi step in deg"])

        # Beam rotation about e2,e3
        KM.setData('Beam rot in deg (e2)', 552, numpy.float64)
        KM.setData('Beam rot in deg (e3)', 560, numpy.float64)
        # Wavelenghts alpha1, alpha2, beta
        KM.setData('Wavelength alpha1', 568, numpy.float64)
        KM.setData('Wavelength alpha2', 576, numpy.float64)
        KM.setData('Wavelength alpha', 584, numpy.float64)
        KM.setData('Wavelength beta', 592, numpy.float64)

        # Detector tilts around e1,e2,e3 in deg
        KM.setData('Detector tilt e1 in deg', 640, numpy.float64)
        KM.setData('Detector tilt e2 in deg', 648, numpy.float64)
        KM.setData('Detector tilt e3 in deg', 656, numpy.float64)

        # Beam center
        KM.setData('Beam center x', 664, numpy.float64)
        KM.setData('Beam center y', 672, numpy.float64)
        # Angle (alpha) between kappa rotation axis and e3 (ideally 50 deg)
        KM.setData('Alpha angle in deg', 672, numpy.float64)
        # Angle (beta) between phi rotation axis and e3 (ideally 0 deg)
        KM.setData('Beta angle in deg', 672, numpy.float64)

        # Detector distance
        KM.setData('Distance in mm', 712, numpy.float64)
        header += KM.__repr__()

        SS = Section(self.header['Statistic Section in Byte'], self.header)
        SS.setData('Stat: Min ', 0, numpy.int32)
        SS.setData('Stat: Max ', 4, numpy.int32)
        SS.setData('Stat: Average ', 24, numpy.float64)
        if self.header.get('Stat: Stddev ', None):
            SS.setData(None, 32, numpy.float64, self.header['Stat: Stddev '] ** 2)
        SS.setData('Stat: Skewness ', 40, numpy.float64)
        header += SS.__repr__()

        HS = Section(self.header['History Section in Byte'], self.header)
        HS.setData('Flood field image', 99, "|S27")
        header += HS.__repr__()

        return header


    def write(self, fname):
        """Write Oxford diffraction images: this is still beta
        @param fname: output filename 
        """
        datablock8, datablock16, datablock32 = compTY1(self.data)
        self.header["OI"] = len(datablock16) / 2
        self.header["OL"] = len(datablock32) / 4
        with self._open(fname, mode="wb") as outfile:
            outfile.write(self._writeheader())
            outfile.write(datablock8)
            outfile.write(datablock16)
            outfile.write(datablock32)

    def getCompressionRatio(self):
        "calculate the compression factor obtained vs raw data"
        return 100.0 * (self.data.size + 2 * self.header["OI"] + 4 * self.header["OL"]) / (self.data.size * 4)

    @staticmethod
    def checkData(data=None):
        if data is None:
            return None
        else:
            return data.astype(int)

class Section(object):
    """
    Small helper class for writing binary headers
    """
    def __init__(self, size, dictHeader):
        """
        @param size: size of the header section in bytes
        @param dictHeader: headers of the image
        """
        self.size = size
        self.header = dictHeader
        self.lstChr = ["\x00"] * size
        self._dictSize = {}
    def __repr__(self):
        return "".join(self.lstChr)

    def getSize(self, dtype):
        if not dtype in self._dictSize:
            self._dictSize[dtype] = len(numpy.zeros(1, dtype=dtype).tostring())
        return self._dictSize[dtype]

    def setData(self, key, offset, dtype, default=None):
        """
        @param offset: int, starting position in the section
        @param key: name of the header key
        @param dtype: type of the data to insert (defines the size!)
        """
        if key in self.header:
            value = self.header[key]
        elif key in DEFAULT_HEADERS:
            value = DEFAULT_HEADERS[key]
        else:
            value = default
        if value is None:
            value = "\x00" * self.getSize(dtype)
        else:
            value = numpy.array(value).astype(dtype).tostring()
        self.lstChr[offset:offset + self.getSize(dtype)] = value