This file is indexed.

/usr/share/pyshared/fabio/fit2dmaskimage.py is in python-fabio 0.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python
#coding: utf8

"""
Author: Andy Hammersley, ESRF
Translation into python/fabio: Jon Wright, ESRF.
Writer: Jérôme Kieffer
"""
# Get ready for python3:
from __future__ import with_statement, print_function

__authors__ = ["Jon Wright", "Jérôme Kieffer"]
__contact__ = "Jerome.Kieffer@esrf.fr"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__version__ = "28 Oct 2013"

import numpy
import sys
from .fabioimage import fabioimage
if sys.version_info < (3.0):
    bytes = str


class fit2dmaskimage(fabioimage):
    """ Read and try to write Andy Hammersley's mask format """


    def _readheader(self, infile):
        """
        Read in a header from an already open file
        """
        # 1024 bytes gives 256x32 bit integers
        header = infile.read(1024)
        for i, j in [ ("M", 0),
                      ("A", 4),
                      ("S", 8),
                      ("K", 12)  ]:
            if header[j] != i:
                raise Exception("Not a fit2d mask file")
        fit2dhdr = numpy.fromstring(header, numpy.int32)
        self.dim1 = fit2dhdr[4] # 1 less than Andy's fortran
        self.dim2 = fit2dhdr[5]


    def read(self, fname, frame=None):
        """
        Read in header into self.header and
            the data   into self.data
        """
        fin = self._open(fname)
        self._readheader(fin)
        # Compute image size
        self.bytecode = numpy.uint8
        self.bpp = len(numpy.array(0, self.bytecode).tostring())

        # integer division
        num_ints = (self.dim1 + 31) // 32
        total = self.dim2 * num_ints * 4
        data = fin.read(total)
        assert len(data) == total
        fin.close()

        # Now to unpack it
        data = numpy.fromstring(data, numpy.uint8)
        data = numpy.reshape(data, (self.dim2, num_ints * 4))

        result = numpy.zeros((self.dim2, num_ints * 4 * 8), numpy.uint8)

        # Unpack using bitwise comparisons to 2**n
        bits = numpy.ones((1), numpy.uint8)
        for i in range(8):
            temp = numpy.bitwise_and(bits, data)
            result[:, i::8] = temp.astype(numpy.uint8)
            bits = bits * 2
        # Extra rows needed for packing odd dimensions
        spares = num_ints * 4 * 8 - self.dim1
        if spares == 0:
            self.data = numpy.where(result == 0, 0, 1)
        else:
            self.data = numpy.where(result[:, :-spares] == 0, 0, 1)
        # Transpose appears to be needed to match edf reader (scary??)
#        self.data = numpy.transpose(self.data)
        self.data = numpy.reshape(self.data.astype(numpy.uint16),
                                    (self.dim2, self.dim1))
        self.pilimage = None
        return self



    def write(self, fname):
        """
        Try to write a file
        """
        header = numpy.zeros(1024, dtype=numpy.uint8)
        header[0] = 77 #M
        header[4] = 65 #A
        header[8] = 83 #S
        header[12] = 75 #K
        header[24] = 1 #1
        str1 = numpy.array([self.dim1], numpy.uint32).tostring()
        str2 = numpy.array([self.dim2], numpy.uint32).tostring()
        if not numpy.little_endian:
            str1 = str1[-1::-1]
            str2 = str2[-1::-1]
        for i, c in zip(range(16, 20), str1):
            header[i] = ord(c)
        for i, c in zip(range(20, 24), str2):
            header[i] = ord(c)
        compact_array = numpy.zeros((self.dim2, ((self.dim1 + 31) // 32) * 4), dtype=numpy.uint8)
        large_array = numpy.zeros((self.dim2, ((self.dim1 + 31) // 32) * 32), dtype=numpy.uint8)
        large_array[:self.dim2, :self.dim1] = (self.data != 0)
        order = 1
        for i in range(8):
            compact_array += large_array[:, i::8] * order
            order *= 2
        with self._open(fname, mode="wb") as outfile:
            outfile.write(header)
            outfile.write(compact_array.tostring())

    @staticmethod
    def checkData(data=None):
        if data is None:
            return None
        else:
            return data.astype(int)