/usr/share/pyshared/fabio/fit2dmaskimage.py is in python-fabio 0.1.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | #!/usr/bin/env python
#coding: utf8
"""
Author: Andy Hammersley, ESRF
Translation into python/fabio: Jon Wright, ESRF.
Writer: Jérôme Kieffer
"""
# Get ready for python3:
from __future__ import with_statement, print_function
__authors__ = ["Jon Wright", "Jérôme Kieffer"]
__contact__ = "Jerome.Kieffer@esrf.fr"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__version__ = "28 Oct 2013"
import numpy
import sys
from .fabioimage import fabioimage
if sys.version_info < (3.0):
bytes = str
class fit2dmaskimage(fabioimage):
""" Read and try to write Andy Hammersley's mask format """
def _readheader(self, infile):
"""
Read in a header from an already open file
"""
# 1024 bytes gives 256x32 bit integers
header = infile.read(1024)
for i, j in [ ("M", 0),
("A", 4),
("S", 8),
("K", 12) ]:
if header[j] != i:
raise Exception("Not a fit2d mask file")
fit2dhdr = numpy.fromstring(header, numpy.int32)
self.dim1 = fit2dhdr[4] # 1 less than Andy's fortran
self.dim2 = fit2dhdr[5]
def read(self, fname, frame=None):
"""
Read in header into self.header and
the data into self.data
"""
fin = self._open(fname)
self._readheader(fin)
# Compute image size
self.bytecode = numpy.uint8
self.bpp = len(numpy.array(0, self.bytecode).tostring())
# integer division
num_ints = (self.dim1 + 31) // 32
total = self.dim2 * num_ints * 4
data = fin.read(total)
assert len(data) == total
fin.close()
# Now to unpack it
data = numpy.fromstring(data, numpy.uint8)
data = numpy.reshape(data, (self.dim2, num_ints * 4))
result = numpy.zeros((self.dim2, num_ints * 4 * 8), numpy.uint8)
# Unpack using bitwise comparisons to 2**n
bits = numpy.ones((1), numpy.uint8)
for i in range(8):
temp = numpy.bitwise_and(bits, data)
result[:, i::8] = temp.astype(numpy.uint8)
bits = bits * 2
# Extra rows needed for packing odd dimensions
spares = num_ints * 4 * 8 - self.dim1
if spares == 0:
self.data = numpy.where(result == 0, 0, 1)
else:
self.data = numpy.where(result[:, :-spares] == 0, 0, 1)
# Transpose appears to be needed to match edf reader (scary??)
# self.data = numpy.transpose(self.data)
self.data = numpy.reshape(self.data.astype(numpy.uint16),
(self.dim2, self.dim1))
self.pilimage = None
return self
def write(self, fname):
"""
Try to write a file
"""
header = numpy.zeros(1024, dtype=numpy.uint8)
header[0] = 77 #M
header[4] = 65 #A
header[8] = 83 #S
header[12] = 75 #K
header[24] = 1 #1
str1 = numpy.array([self.dim1], numpy.uint32).tostring()
str2 = numpy.array([self.dim2], numpy.uint32).tostring()
if not numpy.little_endian:
str1 = str1[-1::-1]
str2 = str2[-1::-1]
for i, c in zip(range(16, 20), str1):
header[i] = ord(c)
for i, c in zip(range(20, 24), str2):
header[i] = ord(c)
compact_array = numpy.zeros((self.dim2, ((self.dim1 + 31) // 32) * 4), dtype=numpy.uint8)
large_array = numpy.zeros((self.dim2, ((self.dim1 + 31) // 32) * 32), dtype=numpy.uint8)
large_array[:self.dim2, :self.dim1] = (self.data != 0)
order = 1
for i in range(8):
compact_array += large_array[:, i::8] * order
order *= 2
with self._open(fname, mode="wb") as outfile:
outfile.write(header)
outfile.write(compact_array.tostring())
@staticmethod
def checkData(data=None):
if data is None:
return None
else:
return data.astype(int)
|